Eradication of HIV by T cell immunotherapy

Jason T. Kimata, PhD
Baylor College of Medicine

From Research to the Real World: Sharing Science Symposium
September 5, 2018
Why We Did this Study

• The Problem: Antiretroviral therapy inhibits HIV replication and drives down the level of virus in the body, but does not cure infection.
• The Reason: HIV can persist in CD4+ T cells in a silent state, or in protected sites within the body, and escapes the host immune response.
• The Question: How can we help improve the immune response against HIV?
• The Idea: Create HIV-specific killer T cells (CD4+ and CD8+) capable of preventing HIV infection and destroying the infected cells.
What We Did

• We developed a cell-associated HIV inhibitor that can protect CD4+ T cells from infection
• Developed a method to expand HIV-specific killer T cells from infected individuals
• Used the inhibitor to genetically modify HIV-specific killer T cells
• Examined the ability of these killer cells to eradicate HIV infected cells
What We Found

1. Potent inhibition of HIV infection by a cell-anchored inhibitor

- Entry Inhibited
- Protects neighboring cells from infection
What We Found

II. Eradication of HIV-infected cells

1. Awaken HIV with a latency reversing agent

2. Sensitize virus producing cells to dying with an anti-cell survival drug

3. X5-AR modified HIV-specific T cells kill virus producing cells
What Our Results Mean and Why this Matters

• It is possible to overcome the resistance of HIV-producing cells to killer T cells by combining the activities of:
 • i) an anti-cancer drug that prevents cell survival, and primes HIV-producing cells to die
 • ii) genetically-modified HIV-killer T cells
• Immune restoration with genetically modified HIV-specific killer T cells may be a feasible way to eliminate infected cells, even in the absence of antiretroviral therapy.
Acknowledgments

Supported by NIH
P30 AI036211
R01 AI106574
R33 AI116167

Kimata Lab
Reetakshi Arora
Emile Gleeson
Cesar Lopez
Anisha Misra
Hongmei Ruan
Monica Yu Kimata

Pasteur-Shanghai
Paul Zhou
Lihong Liu
Weiming Wang
Michael Wen

National Children’s
Catherine Bollard
C. Russell Cruz
Shabnum Patel

GWU
Brad Jones