WISII IM IR GORRIDIV MOBIIITY STUDY

April 2002

Steering Committee Members

Houston-Galveston Area Council Carolyn Anderson
Jerry Bobo
Ilyas Choudry
Alan Clark
Kari Hackett
Anne Mrok-Smith
Texas Department of Transportation
Stuart Corder
Carol Nixon
David Rodgers
Rakesh Tripathi
Sally Wegmann
Westchase District
Jim Murphy
Daniel Tighe

Uptown Houston District
John Breeding
Robert Taube

City of Houston
Robert DeShurley (Transtar)
David Manuel
David Worley

METRO

Alexander Lopez
West Houston Association
Jennifer Rasco
Roger Hord

The Study Team

Houston-Galveston Area Council
Texas Department of Transportation
Westchase District
Uptown Houston District
METRO
City Of Houston
West Houston Association

Funding Agencies

Houston-Galveston Area Council
Texas Department of Transportation
Westchase District
Uptown Houston District

Consultants

The FNII Team:
HNTB Architects Engineers Planners
Wilbur Smith Associates
TEDSI Infrastructure
 Highway Act and Section $8(d)$ of the Federal Transit Act of 1964 as amended
The contents of this document do not necessarily reflect the official views or rolicy of the Federal Highway Administration, Federal Transit Administration, U. S. Department of Transportation, Texas Department of Transorataion, Houston-
Galveston Area Council, Westchase District, Uptown Houston District, Galveston Area Council, Westchase District, Uptown Houston District, Mertropolitan Transit Authority of Harris County County for Harris, City of Houston,
or West Houston Association. Acceptance of this report does not in any way constitute com mitment on the part of any of the above agen nies to participate in any development depicted therein nor does it indicate that the proposed develo is environmentally acceptable in accordance with appropriate public laws.

Contents

Looking east on Westheimer at Beltway 8

Purpose of the Study

The purpose of the study is to identify short-range and longrange transportation improvements along the Westheimer cornidor in order to improve traffic flow and to enhanoe the physical character of the comidor.

> Short Range improvements will be made in two phases. Phase One median,intersection and signal improvements can be made immediately within the existing Public Rights of Way to allow through traffic to move more freely. Phase Two improvements along property frontages will require extensive coordination with property and business owners to consolidate driveways, transfer property needed for right turn lanes and construct wide tree lined sidewalks. Long Range improvements require a change in development patterns transforming auto focused strip centers along Westheimer into pedestrian oriented villages. Case by case ecommendations will be refined per the economic situation of each property involved.

While continuing to provide convenient acoess to the destina tions along it, short-range improvements to the Westheimer cornidor should allow through traffic to move freely without frequent intemuptions. They should also provide safe and convenient transportation alternatives in the form of improved transit and pedestrian aocess. Streetscape improve ments to enhanoe the aesthetic character and vitality of the coridor need to be identified. Building on the transportation
improvements along the Westheimer coridor, long-range development strategies would foster a variety of pedestrianoriented villages These Westheimer village conoepts would be developed to reduce auto dependence and enhance greater foot traffic through higher density mixed-use projects. These projects would promote expanded lifestyle and work-style choioes along with increased economic development opportunities The study provides a list of recommended improvements and strategies that will help in achieving these goals as well as ways to implement the strategies.

The Study Area

Westheimer Road is a major east-west arterial running through the City of Houston. The limits for this 11-mile study segment are from IH-610 (West Loop) in the east to State Highway 6 in the west (Figure 1.1). The width of the study area is approximately 1,000 feet on each side from the centerine of the roadway.

Within the study area, Westheimer intersects three heavily utilized highways and a large number of north-south arterial roadways such as Chimney Rock, Fountain View, Hillcroft/Voss, Fondren, Gessner, Wilcrest, Dairy Ashford, and Eldridge Parkway. The corridor also passes through the oenter of two major business districts - the Uptown Houston District and the Westchase District. Formost of its length, the
corridor serves continuous commercial development with residential and recreational development along cross streets. Often referred to as a "river of commeroe," it is an important economic connidor for the city. The Westheimer conidor is a vital link in Houston's street network, serving through traffic as well as providing acoess to the numerous developments along it. Maintaining its vitality and enhancing its usability are very important to strengthen the physical fabric of Houston.

Through most of the study area, Westheimer is an eight-lane facility within a 120 -foot right-of-way. It gets severely oongested especially during the moming and the evening rush hours. The cornidor is used by regional traffic making long trips as well as local traffic; the current conditions, however, are skewed towards local acoess. Frequent traffic signals, closely spaced driveways for commercial destinations, and heavy turning movements at the numerous median openings are some factors that tend to slow down the through traffic movement along the comidor.

Scope of the Study

The Westheimer Cornidor Mobility Study addresses the issues of transportation and physical enhanoement by identifying short-range improvements for immediate implementation and formulation of a long-range vision for the corridor. Shortrange improvements are roadway improvement strategies that can reduce traffic congestion allowing for faster through movement on Westheimer. However, to maintain a good mobility level in the future and enhanoe the quality of life along the corridor, a long-range plan is needed. A long-range vision is based on a good understanding of the land use and urban planning issues in and around the study area. It provides a guideline for a quality urban environment and promotes mobility by reducing car trips, providing transit alternatives, and creating convenient pedestrian acoess

Methodology

A significant part of the mobility study involved collecting and analyzing relevant data on the comidor such as traffic volumes, aocident rates, and transit usage Gathering public opinion through public meetings and surveys also was an integral part of the study prooess Within the study limits, the Westheimer corridor is represented by three associations: Uptown Houston District, Westchase District, and the West Houston Association. At the same time, there are gaps between these jurisdictions where individual property owners and other stakeholders need a voioe in how changes to the transportation system affect them. A steering committee with representatives from the sponsoring agencies and other stakeholders in the study area was formed to guide the study team throughout the process The final recommendations are based on the analyses done by the study team and the input provided by the public and the steering committee.

Public Involvement Plan

Consistent with the public involvement goals established at the onset of the project, two public meetings were held during the course of the study. The first public meeting was held at the beginning of the study (September 6, 2001) to inform the general public about the study and to gather their input early in the study process. The second meeting was held on February 19, 2002 to present the study recommendations to the public and gather feedback. Both meetings were held at the Tracy Gee Community Center, located oentrally in the study area on Westcenter Drive.

Several approaches were used to ensure that the public meetings were well advertised. Direct mailings to residents and businesses along the conridor, letters to elected officials, media notioes including local newspaper, radio and television, and changeable message signs at important roadway intersections were used to reach a wide cross-section of the population.

Public Meeting No. 1

The first public meeting was attended by a total of 134 citizens and 7 public officials. The meeting was held in an open house format. Several exhibits relating to the study area were displayed and the attendees were free to interact with the study team representatives, ask them questions, and voioe opinions. The meeting altendees also were asked to complete a two-page questionnaire on the comidor. At the meeting
itself, 103 completed questionnaires were tumed in, and 95 more were mailed in later. The completed questionnaires helped the study team in understanding the public sentiment regarding important issues and expected improvements along the comidor. A few significant findings are presented here as highlights of the results.

Result Highlights - 1st Public Meeting

Top 3 improvement prionities for Westheimer:

1. Improved traffic flow
2. Intersection improvements
3. Aocess to / from properties

Top 3 problematic areas/ intersections:

1. Beltway 8
2. Gessner
3. The Gallenia

Transit:

A significant number of the respondents (44\%) said that they would use mass transit along the conidor if options other than buses were present, compared to 20% willing to use buses alone, showing mode bias.

Pedestrian Friendliness:

A majority of the respondents (51\%) felt that there is a need for a more people friendly environment along Westheimer, as opposed to 28% who felt that it was not needed.

Aesthetic improvements:

36% said that they would like to see more landscaping along the corridor.

Public opinion, as gathered through the public meetings and the project web site, helped the study team in identifying the issues of greatest conoem along the Westheimer corridor. It also served as a guiding factor in developing reoommendar tions for immediate improvements as well as a long-range vision for the comidor.

Photographs from the Public Meetings

Public Meeting No. 2

The second public meeting was attended by 24 citizens and one elected official representative. The meeting was held in an open house format similar to the first moeting Several exhibits relating the study recommendations were displayed for review and comment by the public and the study team was present to answer questions. Public comments were collected via a comment form and summanized in a report, which was presented to the technical working group. Information regarding the study recommendations along with the comment form was also placed on the project website (www westheimerooridor.org) to continue collecting feedback from the public. Eleven completed questionnaires were reoeived after the meeting. The public's comments regarding the proposed reoommendations were overall positive.

A majority of the respondents advocated altemative transportation options. Some of the suggestions were -

Improve mass transit, especially west of Beltway 8
Provide better sidewalks and maximize pedestrain linkages between uses
Provide safe and well connected bike lanes and bike friendly stoplights
Enoourage car-pooling

Some other comments were -

- Replace concrete islands that oontain specific cut-thru with tum only lanes. More acoess to places along Westheimer should result in fewer U-turns at signals
- The T-intersection would require "driver education" before they can be sucoessfully implemented

Section II

Existing Conditions

Roadway Conditions

Within the study boundaries, Westheimer Road was constructed as a concrete divided roadway with a raised median, concrete curb, and gutters. An asphalt overlay was installed as a maintenance project by the Texas Department of Transportation (TxDOT). The study section of Westheimer Road includes an eight-lane section with four travel lanes in each direction. However, the eastbound lanes are reduced to three travel lanes between West Alabama Street and IH 610. Dedicated turn lanes are provided at major intersections and median openings with a typical storage capacity of 150 feet. Concrete sidewalks with curb ramps are provided along both sides of the roadway in most locations.

The Westheimer Road study section includes intersections with three major north-south freeway/ highway facilities: IH 610, Beltway 8, and SH 6. Spacing of north-south major thoroughfares and traffic signals in the study section ranges from one-half to one mile. In addition, Westheimer intersects with 76 north-south roadways, of which 43 are signalized and 33 are unsignalized. Many of the minor connecting streets do not provide continuation and extension of the local street network. The fragmented local street system with dead-end streets, cul-de-sacs, and gated communities, foroes traffic onto major thoroughfare streets, increasing the number and length of vehicle trips and resulting in congested conditions.

Westheimer Road in the study area

Figure 2.1: Typical cross-section of
Westheimer Road in the study area

Transit Service

METRO operates two major local bus routes along Westheimer Road, which have the second highest nidership in the system. The two routes are:

53 Westheimer Limited, which provides servioe from Downtown to the West Oaks Mall and to Westside High School

82 Westheimer, which provides service from Downtown to the West Oaks Mall and to Bellaire and Sharpstown Center.

Intersecting bus routes operating on Post Oak Blvd., Hillcroft, Gessner, Wilcrest, and Dairy Ashford provide transit acoess to areas north and south of Westheimer via bus transfers. Bus stop locations with significant levels of bus boardings and alightings, resulting in increased pedestrian activity, include Post Oak Boulevard, Hillcroft, and Gessner.

Buastay	0
	*
	6
Bur) ${ }^{\text {ansur }}$	-
	-
	\rightarrow
	-
	- 1
	\square
	\square
	± 1
	- 2
	$\cdots 3$
	$\underline{-3}$
	\pm

Figure 2.2: Bus Routes between SH 6 and Beltway 8

Figure 2.3: Bus Routes between Beltway 8 and IH 610

Traffic Flow and Traffic Volumes

The TxDOT year 2000 traffic map indicates an annual average daily traffic of 62,000 vehicles per day near the Westheimer and Beltway 8 intersection and reduces to 36,000 near the SH 6 intersection. The traffic flow along Westheimer Road exhibits a typical urban commute pattern (i.e, the moming peak direction is from the suburbs towards the city oenter and the aftemoon peak direction is the retum trip from the city oenter to the suburbs). The moming peak direction along Westheimer Road is eastbound, and the aftemoon peak direction is westbound.

This study focuses on the PM peak period because existing traffic volumes were available and typically this is the period in which higher traffic congestion and delays are observed. Figures 2.4 and 2.5 show the traffic volumes and the intersection Level of Service (LOS) in the study area. Figure 2.6 illustrates traffic conditions associated with the various LOSvalues. During the PM peak period, the westbound traffic vol-

```
2000-2809
=3000-3509
Greater Thas 4000
Intersection Levels af Sevilot
    - Lemels of Service A-B
    O Levels of Sevice C-D
    - Lovels of Kervire E-F
```


Figure 2.5: PM Peak Hour Traffic and LOS between Beltway 8 and IH 610

umes range from 2,900 vehicles per hour (vph) in the Galleria areato $4,000 \mathrm{vph}$ near Beltway 8 and the eastbound traffic volumes from 2,300 vph near Fondren Road to 1,600 vph near SH 6.

Congested Intersections

The problem intersections along Westheimer Road are typically the high volume, signalized major thoroughfare intersections. These intersections experience long delays and poor LOS. (That is, the observed delay at these intersections is 55 seconds per vehicle or higher and the LOS is E or F). Typically, the left tum volumes are high and do not clear the intersection every cycle. Left tum vehicles under these condi-

Figure 2.6: Level of Service (LOS) Defintion

tions queue onto the through lanes of Westheimer Road obstructing traffic (for example, eastbound left tum movement at Westheimer Road and Post Oak Boulevard).

Furthermore, the through volumes are considerably high, and at some intersections through vehicles do not clear the intersection every cycle oocasioning long queues that can extend to upstream intersections (for example, westbound through movement at Westheimer Road and Wilcrest Drive). The following is a list of intersections where high delays and poor LOS were identified:

IH 610 Frontage Road

Post Oak Boulevard
Sage Road
Chimney Rock Road
Fountain View Drive
South Voss Road / Hillcroft Avenue
Dunvale Road
Fondren Road
South Gessner Road
Beltway 8 Frontage Road
Wilcrest Drive
Kirkwood Drive
South Dairy Ashford Road
Eldridge Parkway
State Highway 6

Westheimer at IH 610 , looking west

Westheimer at Beltway 8, looking east

Accident Review

The study area's aocident history was obtained from the Texas Department of Transportation (TxDOT) for the three year period from 1997 to 1999. The TxDOT Traffic Aocident Records are an edited version of the Texas Department of Public Safety's Records merged with TxDOT roadway information. The aocident records incorporate information on aocident location, severity (in terms of fatality, injury, and property damage only aocidents), and manner of collision. A total of 2,729 vehicle aocidents were recorded within the study area during the three year time period, as shown in Table 2.1.

Table 2.1
1997-1999 Accident Summary for Westheimer Road

W. Sam Houston Tollway to S. H. 6				
Year	Fataity Accidents	Injury Accidents	Property Damage Only Accidents	${ }^{\text {Total Accidents }}$
1997	1	252	78	${ }^{331}$
1998	1	248	${ }_{98}$	347
1999	2	261	108	371
Total	4	761	284	1049
1 H 610 to W. Sam Houston Tollway				
Year	Fataily Accidents	Injury Accidents		Total Accidents
1997	1	406	154	561
1998	0	405	137	542
1999	1	423	153	577
Total	2	1234	444	1680
A salmamen				
A Sinlathen				
				IneVona

Figure 2.6: Motor Vehicle Accidents in 1998 between SH 6 and Beltway 8

Figure 2.7: Motor Vehicle Accidents in 1998 between Beltway 8 and IH 610

For aocident review purposes, Westheimer Road was divided in two sections: State Highway 6 to Beltway 8 (west section) and Beltway 8 to IH 610 (east section). The two sections had average aocident rates of 363.0 (west section) and 398.3 (east section) aocidents per 100 million vehicle miles traveled (aocidents per 100 MVMT) duning the three-year period, as shown in Table 2.2. The statewide average accident rate for four-lane divided roadways in urban areas was 141.5 in 1997. It dropped to 135.0 in 1998 and to 132.9 in 1999

Table 2.2
Accident Rates for Westheimer Road

	Accident Rate (Accidents per 100 MVMT)			
	1997	1998	1999	$3-\mathrm{Y}_{\mathrm{r}}$ Average
$\begin{aligned} & \text { West Section: } \\ & \text { State Highway } 6 \text { to } \\ & \text { Beltway } 8 \end{aligned}$	381.0	333.3	374.7	363
East Section: Beltway 8 to IH 610	406.8	385.4	402.6	398.3
Statewide Average *	141.5	135.0	132.9	136.5

* Note: Statewide Traffic Accident Rate for Urban four or more lanes divided roadway

Typically, roadway facilities are considered to have a significant aocident problem when the aocident rate is double the statewide average. Under this criterion, the two analyzed sections of Westheimer Road qualify as having a significant aocident problem. The east section has an aocident rate of 292% of the statewide average. The west section has an aocident rate of 266% of the statewide average.

Street intersections, median openings, and driveways represent basic vehicle conflict areas. Conflict points provide increased opportunity for aocidents Street intersections with a high number of conflict points have the highest potential for aocidents As noted in Table 2.3, intersection and intersectionrelated aocidents represent more than half the aocidents occurning on Westheimer. The roadway segment from IH610 to Beltway 8, with higher levels of traffic and development, experienoes a higher peroentage of aocident in each of the location categories

Table 2.3

Accident Locations along Westheimer Road

$\begin{array}{\|c} \text { Accident } \\ \text { Location Type } \\ \hline \end{array}$	$\underset{\substack{\text { Westheimer } \\ \text { Segment }}}{ }$	$\begin{aligned} & \text { Year } \\ & 1997 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 1998 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 1999 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Accident } \\ \text { Total } \end{array}$	Perce
Intersection/Related	SH 6 to Beltway 8	162	190	175	527	19.310
	Beltway 8 to $1+1$ 610	260	287	302	849	31.11\%
Non-Intersection	SH 6 to Betlway 8	124	105	124	353	12.9
	Beltway 8 to 1 H 610	212	177	202	591	21.66\%
Driveway	SH 6 to Betlway 8	45	52	72	169	6.19\%
	Beltway 8 to 1 H 610	89	78	73	240	8.79\%
	Total	803	811	875	2729	100\%

Accident Rates on Westheimer Road are significantly higher than the statewide average:

Between State Highway 6 and Beltway 8 accident rates are 2.5 times higher than the statewide average.

Between Beltway 8 and IH 610 accident rates are 3 times higher than the statewide average.

Driveway Access to Parking

The driveway density, or the number of connecting driveways, varies with the level of commercial development along the study section. Chimney Rock to Gessner, with primarily oommercial development, has a driveway density of 56 driveways per mile. The adjoining section from Gessner to Wilcrest with more limited acoess residential development has a driveway density of 36 driveways per mile. Driveway density is important because aocident rates have been determined to increase as driveway density increases Driveways represent traffic intersections and potential for vehicle conflict points. Adequate spacing of driveways allows drivers to react to one intersection at a time and reduce the potential for conflict.

Driveway acoess along Westheimer Road also is important to traffic flow and safety because of several factors:

Number of driveways

The number of driveways is a problem because of the high number of conflict points between vehicles entering and exiting driveways. Vehicles entering driveways have to change lanes to reach the destination driveways, sometimes up to four travel lanes in short distanoes, and vehicles exiting driveways have to merge with the through vehicles traveling on Westheimer Road. These maneuvers cause vehicles to slow down and/ or brake suddenly increasing the potential of rear

end, sideswipe, and right angle aocidents.

Driveway turning radius

Small turning radii require entering or exiting vehicles to slow down or tum wide to oomplete their maneuver, creating potential blockages and conflicts

Raised driveways

Raised driveways have steep slopes requiring vehicles entering and exiting a driveway to execute a slower maneuver, causing potential blockages and conflicts.

Dniveway Oomer clearanoe

Comer clearance provides a minimum distance between an intersection and an adjacent driveway. Inadequate comer
clearanœe results in traffic flow and safety problems, including traffic blocked by vehicles waiting to enter driveways, right or left tums out of driveways being blocked, and oollisions caused by inadequate time for drivers to react to vehicles entering or exiting the driveway.

Pedestrian Safety

For pedestrians, driveways represent traffic intersections that are potential conflict points. Numerous and closely spaced driveways create an ovedap of the operational area of driveways. Pedestrians and drivers have a difficult time mentally processing more than one conflict point at a time. Reducing the number of driveways reduces the conflict points proportionally. Increasing driveway spacing allows pedestrians and drivers to conoentrate on one problem at a time.

Section III
 Short-Range Improvements

Access Management Strategies

For the Westheimer Comidor Study, acoess management conoepts were applied to achieve the project goals and objectives Aooess management is the coordination between land acoess and traffic flow The basic premise of aooess management is to preserve and enhanoe the performanoe and safety of the major street system It manages congestion on existing transportation facilities and protects the capacity of future transportation systems by controlling acoess from adjacent development. Propely utilized, it can eliminate the need for street widening or right-of-way aoquisition

Techniques to acoomplish aooess management indude limiting and separating vehicle (and pedestrian) conflict points, reducing locations that require vehicle deoderation, removing vehide tuming movements, creating intersection spacing that facilitates signal progression, and providing on-site ingress and egress capacity. In addition, regulation focusing on the spacing and design of driveways, street connections, medians and median openings, auxiliary lanes and transit facilities, on-street parking and parking facilities, on-site storage aisles, traffic signals, tum lanes, freeway interchanges, pedestrian and bicyde facilities, bus stops, and loading zones should be considered

Research indicates that a well-designed and effectively adminis tered acoess management plan can result in the following tangible benefits:

- Aocident and crash rates are reduced.
- Roadwey capacity and the useful life of transportation facilities is prolonged.
- Travel time and congestion is decreesed.

Better coordination between aooess and land uses is acoomplished.
Air quality is improved.
Eoonomic activity is enhanoed by a safe and efficient transportation system
Urban design and transportalion objectives are reconciled.
The unique character and livability of the commmity is pre served through the coordination of land use and transporta tion.

Failure to manage acoess negatively impacts the efficiency of transportation networks in the following ways:

More driveways related to strip commercial development.
Local streets becoming bypasses for congested streets thereby crealing the need to address cut-through traffic in residential neighborhoods
More frequent driveway related aocidents
Vehicle conflicts from dosely spaoed driveways, which increase congestion, thereby reducing throughput.

Longer travel times that reduce market arees for business
More difficulty in providing safe acoess for new development, thereby affecting economic grouth
Lower investment benefits of transportation improvements
Greater need for wider streets to compensate for lost capacity.
More cluttered streets and frequent driveways, which create an undesirable environment for pedestrians and bicyclists

On the next several pages, the traffic analysis conducted for this study is explained, the improvement types are described, and the recommended implementation projects are listed. All the recommended changes to the roadway are applications of acoess management strategies

Beyond the specific projects reoommended in this report, more systemic strategies could be applied to the Westheimer comidor, as well as the entire Houston region. The following aooess management strategies may be used to coordinate the acoess needs of adjaoent land uses with the function of the transportation system:

Intergowemmental Coordination. Aocess management is most effectiveas aregional strategy that involves members of theMPO, as well as state and local organizations involved in design and oonstruction of roadweys Through coordinated efforts, acoess management can even further add to thoroughfare efficiency. The Westheimer Conidor can serve as a pilot project for potential application in other similar comidors in the H-GAC region.

Establish Design Standards. Design standards addressing the spacing of aooess points, driveway dimensions and radii, sight dis tanoe, and the length of tum lanes and tapers are effective mechanisms for managing the balanoe between the movement of traffic and site acoess

Limit Conflict Points. When the number of conflict points between tuming vehicles increeses, so do the opportunities for traffic aocidents Drivenay consolidations and directional median openings can safely provide aooess management with fever conflict points

Separate Conflict Points. Spacing driveways so they are not located within the area of influenoe of intersections or other drivenays is a method to achieve acoess management objectives

Remove Tuming Vehides from Through Travel Lanes, Left and night tum speed change lanes provide for the deoeleration of vehides turning into driveways or other major streets and for the acoeleration of vehicles exiting driveways and entering roadways

Enoourage Shared Driveways, Unified Site Plans, and Cross Acoess Easements. Joint use of driveways reduoes the proliferation of driveways and preserves the capacity of major transportation comidors Such driveway arrangements also enoourage shaning of parking and intemal circulation among businesses that are in dose proximity.

Locate and Design Traffic Signals to Enhanoe Traffic Movement. Interoonnecting and spacing traffic signals to enhanoe the progressive movement of traffic is another strategy for managing mobility needs A program to maintain signal progression to adhieve safety, travel speed, and vehide capacity can help to achieve mobility objectives

Broader Access Management Strategies
Intergovernmental Coordination
Establish Design Standards
Limit Conflict Points
Separate Conflict Points
Remove Turning Vehicles from Through Trave Lanes
Encourage Shared Driveways, Unified Site Plans, and Cross Access Easements

Locate and Design Traffic Signals to Enhance Traffic Movement

Traffic Analysis for Short-Range Improvements

This section describes the traffic analysis process and the traffic model calibration methodology. It then summarizes the impacts of proposed traffic improvements and modifications on average corridor travel time, average comidor delay, and average number of stops per vehicle.

Study Area

The study area is located along Westheimer Road between IH 610 and State Highway 6. This segment of Westheimer contains 43 signalized intersections. The study area was further divided into four sections, two of which were analyzed in detail using a traffic simulation model. The two modeled sections are the segment between IH 610 and Chimney Rock Road (Uptown section) and the segment between South Gessner Road and Wilcrest Drive (Westchase section)

Data Collection

Existing intersection tuming movement counts, number of median openings, driveway movement counts, travel times roadway geometric data, and lane utilization data were collected between August and October 2001 for evaluating existing traffic operations. Turning movement counts were collected during the PM peak period between the hours of 4:30 PM and 6:30 PM. Traffic signal timing information was obtained from the City of Houston and was field verified in September 2001 Transit operation data was obtained from METRO. As described earlier, TxDOT provided aocident data for the years 1997, 1998, and 1999.

Traffic Simulation Analysis

The analysis prooess for evaluating short-range improvement altematives involved the preparation of a traffic simulation model using VISSIM (version 3.5) software. VISSIM is a microscopic, time step, and behavior-based computer model developed to simulate urban and public transit operations. The traffic model provides estimates of travel time (seconds per vehicle), average delay (seconds per vehicle), number of stops (stops per vehicle), and other parameters for use in evaluating traffic conditions along user-defined roadway segments. Data inputs for the model included weekday PM peak hour vehicle turning movement volumes at intersections, median opening and driveway locations, roadway geometric data and lane utilization, transit operations including bus stop locations and bus headways, and traffic signal phasing and timing pattems. Default values were used for more complex model inputs

Existing Traffic Model Development

Within the Uptown section, Westheimer is a divided roadway with four lanes in the westbound direction. Eastbound has four lanes west of West Alabama Street and three lanes eest of West Alabama Street. The primary land use in this section is commercial. The Uptown Section includes seven signalized intersections:

Westheimer Road at IH 610 East Frontage Road
Westheimer Road at IH 610 West Frontage Road Westheimer Road at Post Oak Boulevard
Westheimer Road at MoCue Road
Westheimer Road at Sage Road
Westheimer Road at Yorktown Street
Westheimer Road at Chimney Rock Road

Within the Westchase section, Westheimer is a divided roadway with four lanes in both the westbound and eastbound directions. The primary land use in this section is commercial, although some residential land use exists in the eastem portion of the study area. The Westchase section has ten signalized intersections:

Westheimer Road at South Gessner Road
Westheimer Road at Elmside Drive Westheimer Road at Briarpark Drive Westheimer Road at Seagler Road Westheimer Road at Beltway 8

East Frontage Road
Westheimer Road at Beltway 8
West Frontage Road
Westheimer Road at Rogerdale Road
Westheimer Road at Blue Willow Drive
Westheimer Road at Walnut Bend Lane
Westheimer Road at Wilcrest Drive

Calibration of the Model

The traffic simulation model for existing conditions was calibrated to ensure that the resulting output and evaluation propely duplicate actual traffic operating conditions. Refinements were made to the default model input parameters such as driver performanoe, until the model replicated observed existing oonditions, within aoceptable limits.

Existing travel time data for the two analysis sections were collected during the month of October 2001 during the afternoon peak period. Average car travel time runs in both directions were performed in the Uptown and Westchase sections during the PM peak period. For calibration purposes, the actut al travel times were established by using an average of these travel time runs. The VISSIM model for existing conditions was then run to obtain the simulated travel time.

For average car travel time runs, a vehicle is driven along the study section according to the driver's judgment of the average speed of the traffic stream. A stopwatch is used to record the time interval to travel from the beginning to end of the section. Four runs are timed in each direction and then averaged.

The simulation time and average car travel time were compared to determine if they were similar enough to be considered acoeptable. This travel time threshold accounts for vaniations in traffic distribution, such as driver and automobile population, yellow reaction time, gap acoeptance factor, courtesy deoeleration rate, and several other contributing factors. The survey average car travel time is simply based on the experienoes of a single driver on individual trips. In addition, field reviews showed that traffic conditions along Westheimer Road tend to fluctuate from day to day, depending on traffic conditions on other roads that feed Westheimer Road and along altemate routes to Westheimer Road. To acoount for these factors, a travel time acoeptable threshold, or travel time tolerance, of 30 seconds was considered acoeptable for calibration purposes. Calibration results are shown in Table 3.1.

Measures of Effectiveness (MOEs)

Operational performance of the proposed altemative improvements can be evaluated in terms of measures of effectiveness (MOEs), which oould include travel time, vehicle stops, delays, vehicle hours of travel, vehicle miles of travel, fuel consumption, and several other measures. The MOEs provide a basis for evaluating the performance of the proposed improvements compared to the existing conditions The MOEs selected to evaluate the proposed short-range improvements along the Westheimer comidor were:

[^0]With the short-range goal of increasing mobility and improving traffic flow, the selected MOEs of travel time, vehicle delay, and stops best serve to illustrate quantitatively the changes that the proposed improvements will have on traffic operations in the study sections. Drivers have an understanding of and can relate to these measures as they are traveling through the coridor. Other measures, such as vehicle emissions or number of person-trips, require more detailed information and coding input when creating the traffic model. In addition, these quantitative measures are less familiar to drivers.

Table 3.1

Existing Model Calibration for PM Peak Period Travel Time

Westheimer Analysis Section	Travel Direction	Distance (Miles)	Floating Car Travel Time (seconds)	Simulation Travel Time (seconds)	Difference (seconds)	Status
Loop 610 to Chimney Rock Road	WB	1.2	259	240	19	
	EB		477	459	18	Calibrated
S. Gessner Road to Wilcrest Drive	WB	2.0	554	578	24	Calibrated
	EB		403	426	23	Calibrated

Analyzed Short-Range Improvements

The proposed short-range improvements along the Westheimer conidor were categorized as Phase One Prionty and Phase Two Prionity. Phase One short-range improvements are geometric and operational improvements that can be implemented within a short time frame of 1-2 years. Phase One improvements are contained within the existing street night-of-way and do not have extensive engineering or construction requirements such as major utility adjustment and right-of-way aoquisition. Phase Two short-range improve ments require more extensive coordination with property owners, potential acquisition of right-of-way, and more detailed engineering or adjustment of utilities. In most cases Phase One and Phase Two improvements can be constructed independently. On this and the following pages is a summary of the analysis of these short-range improvements

Phase One Priority Short-Range Improvements

The following strategies were considered and tested as Phase One Prionity improvements:

Median Closures-Serve to minimize median and through lane blockage and conflict points at low volume median crossings, especially those without left tum lane bays (Figure 3.1).

Median Channelizations - Serve to reduce median blockage and conflict points at median crossings by allowing left tums only from the median (Left turns from driveways are prohibited.). See Figure 3.2.

Left Tum Bay Extensions - Serve to increase storage capacity and reduce through traffic interference at intersections with high left turn volume. Tuming capacity also can be increased by providing dual turn lanes (Figure 3.3).

Signal System Improvements - Maximize and maintain through vehicle progression along the corridor by improvements in signal control hardware to allow use of optimized signal phasing and timing pattems.

Summary of Phase One Improvements
Median Closures
Median Channelizations
Left Turn Bay Extensions
Signal System Improvements

Figure 3.1
Median Closure

Phase Two Priority Short-Range Improvements

The following strategies were considered and tested for Phase Two Prionity improvements:

Drivenay Consolidations - Consolidate multiple driveways serving a single site and/ or driveways located close to intersections to reduce vehicle conflicts, reduce through traffic blockages, and improve pedestrian safety (Figure 3.4).

Right Tum Bays - Provide right tum bays at locations with high right turn volumes to reduce through traffic blockages and potential oonflicts (Figure 3.5). Tuming traffic reduces the vehicle carrying capacity of traffic lanes Segregating tuming traffic from through traffic is an effective way to acoomplish smooth and even traffic flow at busy intersections.

T-Intersection Treatment - Minimize delay at signalized intersections for the through traffic that normally would be required to stop for a signal. Traffic that would have been required to stop can continue unimpeded while still permitting tuming movements from side streets onto the main roadway (Figure 3.6).

Summary of Phase Two Improvements

Driveway Consolidations
Right Turn Bays
T-Intersection Treatment

Figure 3.4
Driveway Consolidation

Figure 3.5 Right Turn Bay

Figure 3.6
T-Intersection Treatment

Improvement Analysis Results

Improvements for the Uptown section and the Westchase section were modeled to evaluate the impacts on traffic flow in each section. For instance, in considering median closures, any existing traffic using a median proposed for closure was rerouted to the adjacent channelized median opening where turn lane storage capacity could be evaluated further. Improvements were grouped and evaluated further based on their implementation priority or type of improvement. The analysis soenarios for the short-range improvement are as follows:

Existing This soenario provides the baseline condition to assess or quantify the benefits of proposed improvements. It replicates existing field conditions such as signal phasing and intervals, lane configuration and assignment, traffic volumes, and vehicle speeds.

Median Closures, Channelizations, and Left Tum Bays The median closures, channelizations, and left tum bay extensions represent the Phase One short-range improvements and the initial analysis soenario

Signal System This soenario evaluates the short-range improvement with traffic signal timings optimized and synchronized to achieve improved vehicle progression. The sig-
nal system soenario assumes that the proposed improvements evaluated in the previous soenario have been implemented. Therefore, the improvements shown by this soenario are cumulative and include improvements from the previous soe nario.

Right Tum Bays and Driveway Consolidation. The right tum bays and driveway consolidations represent the Phase Two short-range improvements. As explained in the previous soe nario, the improvements obtained by this soenario are cumulative, and include improvements expected in the two previously mentioned soenarios.
"Unoonventional" Left Tum or T-Intersection Treatment. This treatment is proposed for existing signalized T-intersections, where a side street begins or ends at Westheimer, but does not continue across on the other side of the intersection. Because of the nature of the treatment and the low number of locations where it could be implemented, this treatment was analyzed separately and is not included with other soenarios. Westheimer Road at Elmside Drive was selected as a case study for this treatment. This intersection currently is signalized, and Elmside Drive forms a T-intersection with Westheimer Road from the south.

IH 610 to Chimney Rock Road

The VISSIM models developed for the IH 610 to Chimney Rock Road (Uptown) section indicate that the Phase One and Phase Two short-range improvements will positively impact traffic conditions along Westheimer Road. The model MOEs are illustrated in Table 3.2. On average, the cumulative Phase One short-range improvement benefits will result in 14 to 32 peroent reductions in travel time for the westbound and eastbound traffic, respectively. Phase Two short-range improve ments were calculated to further reduce travel times, average delay, and average number of stops. The model represents improvements for the PM peak period, which has higher traffic volumes in the westbound direction.

Table 3.2
IH 610 to Chimney Rock Road - Computed Benefits of Short-Range Improvements

IH 610 to Chimney Rock Road								
	Scenario	Direction	Travel Time (sec/veh)	Percent Improvement (Cumulative)	Average Delay (sec/veh)	Percent Improvement (Cumulative)	Stops (stops/veh)	Percent Improvement (Cumulative)
Existing		WB	259		144		6.3	
		EB	477		361		11.5	
	Median Closures and Left Turn Bays	WB	231	11\%	117	19\%	5.4	15\%
		EB	418	12\%	306	15\%	9.3	19\%
	Signal Timing ${ }^{1}$	WB	224	14\%	107	26\%	4.8	24\%
		EB	324	32\%	209	42\%	5.8	49\%
	Right Turn Bays and Driveway Consolidation	WB	218	16\%	105	27\%	4.6	27\%
		EB	310	35\%	195	46\%	5.5	52\%

Notes:

1. Percent Improvement statistics in Signal Timing scenario include the improvements made in Median Closures/Channelization and Left Turn Bays Scenario.
2. Percent Improvement statistics in Right Turn Bays and Driveway Consolidation include the improvements made in Median Closures/Channelization and Left Turn Bays and Signal Timing Scenarios.

South Gessner Road to Wilcrest Drive

As reviewed in the IH 610 to Chimney Rock Road section, the South Gessner Road to Wilcrest Drive (Westchase section) VISSIM model showed that Phase One and Phase Two shortrange improvements will positively impact traffic oonditions along Westheimer Road. The MOE statistics for this section are illustrated in Table 3.3. On average, the cumulative Phase One short-range improvement benefits will result in 32 to 27 peroent reductions in travel time for westbound and eastbound traffic, respectively. Phase Two short-range improvements also were calculated to incrementally reduce travel time,
average delay, and average number of stops.
Table 3.3
S. Gessner Road to Wilcrest Drive - Computed Benefits of Short-Range Improvements

S. Gessner Road to Wilcrest Drive							
Scenario	Direction	$\left\lvert\, \begin{gathered} \text { Travel } \\ \text { Time } \\ \text { (sec/veh) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Percent } \\ \text { Improvement } \\ \text { (Cumulative) } \end{gathered}\right.$	Average Delay (sec/veh)	$\begin{gathered} \text { Percent } \\ \text { Improvement } \\ \text { (Cumulative) } \end{gathered}$	Stops (stops/veh)	$\begin{gathered} \text { Percent } \\ \text { Improvement } \\ \text { (Cumulative) } \end{gathered}$
Existing	wB	578		398		17.0	
	EB	426		250		9.8	
Median Closures/ Channelization and Left Turn Bays	wB	464	20\%	284	29\%	11.8	30\%
	EB	423	1\%	247	1\%	9.6	2\%
Signal Timing ${ }^{1}$	WB	391	32\%	209	48\%	8.9	48\%
	EB	312	27\%	133	47\%	5.5	44\%
Right Turn Bays and Driveway Consolidation ${ }^{2}$	wB	374	35\%	188	53\%	7.7	54\%
	EB	299	30\%	119	52\%	4.9	50\%

Notes:

1. Percent Improvements in Signal Timing scenario include improvements made in Median Closures/ Channelization and Left Turn Bays Scenario.
2. Percent Improvements in Right Turn Bays and Driveway Consolidation made in Median alosures/ Chan and Left Turn Bays and Signal Timing Scenarios

It should be noted that reductions in travel time, average delay, and average number of stops were determined for the two most congested segments of the coridor, near major interchanges (Westheimer Road at IH 610 in Uptown and Westheimer Road at Beltway 8 in Westchase). While there will be similar results from similar improvements in other sections the benefits for less congested areas might be slightly smaller.

Geometric Modifications and Signal Optimization Soenario. This soenario includes all geometric modifications included in the previous soenario and adds the benefit of signal optimiza tion.

Results are shown in Table 3.4 and are summarized as follows:

Geometric Modifications Soenanio. This soenario does not offer any improvements in travel time, average delay, or stops. This is due to the reduction in number of lanes for free flowing traffic (that is, four through travel lanes before the T-intersection treatment is installed, reduced to only three through travel lanes at the T-intersection). Another effect could be the proximity of adjacent signalized intersections that may interfere with operations at the T-intersection.
Table 3.4
Computed Benefits of T-Intersection Treatment Improvements

T Intersection - Westheimer Road at Elmside Drive							
Scenario	Direction	$\begin{array}{\|c\|} \hline \text { Travel } \\ \text { Time } \\ \text { (sec/veh) } \end{array}$	Improvement	$\begin{array}{\|c\|} \hline \text { Average } \\ \text { Delay } \\ \text { (sec/veh) } \end{array}$	Improvement	$\left\lvert\, \begin{gathered} \text { Stops } \\ \text { (stops/veh) } \end{gathered}\right.$	Improvement
Existing	WB *	125		45		1.61	
	EB	203		124		3.94	
$\begin{aligned} & \text { Geometric } \\ & \text { Modifications } \\ & \text { only }{ }^{1} \end{aligned}$	WB ${ }^{2 *}$	127	$\begin{gathered} \mathrm{No} \\ \text { Improvement } \\ \hline \end{gathered}$	48	$\begin{gathered} \text { No } \\ \text { Improvement } \end{gathered}$	1.74	$\begin{gathered} \mathrm{No} \\ \text { Improvement } \\ \hline \end{gathered}$
	EB	205	No Improvement	126	No Improvement	3.97	$\begin{array}{c\|} \hline \text { No } \\ \text { Improvement } \end{array}$
Geometric Modifications and Signal Optimization	WB ${ }^{2 *}$	113	9\%	33	27\%	0.87	46\%
	EB	135	34\%	56	55\%	1.76	55\%

Notes:

1. Improvement statistics using existing traffic signal coordination (e.g., existing offsets)
2. Free through movement

* Peak Direction

Geometric Modifications and Signal Optimization Soenario This soenario offers improvements in travel time, average delay, and stops for the through movements along Westheimer Road. It should be noted that this improvement is achieved because of the optimized coordination at the nearby intersections after the T-Intersection Treatment is implemented. This treatment is expected to reduce travel time by 9 peroent in the free flow direction and 34 peroent in the opposite direction during the PM peak period analyzed.

It is noted that while there are reductions in travel time, average delay, and stops resulting from these improvements, there are pedestrian crossing and transit stop issues related to its implementation.

An opportunity for further study could be to determine if the roadway can be reconfigured to maintain four westbound through-lanes. A detailed evaluation of pedestrian and transit impacts could be accomplished at that time. In addition, computer models could be prepared to test the sensitivity to adjacent signal proximity.

List of Improvement Recommendations

For the purposes of organizing the short-range improvement reoommendations, the study conidor was divided into four segments. The segment limits respected the boundaries of the two management districts, so that two segments are wholly contained within the management districts and two segments are outside the management districts. The four segments are:

Segment 1:
From the West Loop to Chimney Rock
(Uptown Houston district)

Segment 2:

From Chimney Rock to Westerland

Segment 3:

From Westerland to Woodland Park
(Westchase District)
Segment 4:
From Woodland Park to State Highway 6

Recommended short-range improvements consisted of seven types:

- Median closures

Median channelizations
Left tum bay extensions
Signal improvements
Right tum bays
Driveway oonsolidation
T-Intersection signal modifications

Of these, oertain improvements oould proceed quickly under the direction of TxDOT, the City of Houston, or METRO, because they do not impact right-of-way or right of acoess These are median closures, median channelizations, left tum bay extensions, and signal improvements. Because they can be implemented expeditiously, these are called the Phase One Prionity improvements.

Right tum bays and driveway consolidations in general require negotiation with adjacent landowners for right-of-way aoquisi-
tion or changing aocess points. These are called the Phase Two Prionity improvements.

The T-intersection signal modifications require more detailed study on a case-by-case basis to evaluate whether the proximity of adjacent signalized intersections negates the benefits of the modifications. In addition, the feasibility of providing a fourth through-lane at these locations should be considered. They are included among the Phase Two Prionity projects

Table 3.5 on the opposite page shows the number of candidate locations for each type of improvement, divided by segment. Following is a discussion of the specific candidate loca tions that have been identified. These locations are depicted graphically in the Appendix.

Table 3.5

Matrix of Proposed Short-Range Improvements

[^1]
SHORT-RANGE IMPROVEMENTS

Segment 1: West Loop to Chimney Rock (Uptown Houston section) Phase One Priority
 Proposed Median Closure Locations
 Phase Two Priority
 Proposed Driveway Consolidation Locations

Median west of Post Oak (close westbound left only)
Median east of MoCue (close eestbound left only)
Median west of Westheimer Way
Median east of Chimney Rock
Proposed Left Turn Bay Extension Locations

Eastbound left tum bay at Post Oak
Westbound left tum bay at MoCue
Westbound left tum bay at Chimney Rock

Proposed Signal System Improvement Projects

Install new signal controllers for signal system compatibility Install signal interoonnect and maintain vehicle detectors for system synchronization and operation

Provide program for signal system timing optimization and operation of signal system
Signalize northbound right turn at Westheimer and Post Oak, install overhead directional / lane use signage

North side of Westheimer

Eliminate second driveway west of Sage, improve third driveway
Eliminate fourth driveway west of Sage, improve fifth drive way
Eliminate driveway east of Chimney Rock, improve second driveway

South side of Westheimer

Eliminate first driveway to the east of Post Oak, improve second driveway

- Improve second driveway to the west of Post Oak

Eliminate second driveway to the west of W. Alabama, improve third driveway

Proposed Right Turn Bay Locations

Extend night tum bay for southbound night tum movement at Post Oak

New right tum bay for eastbound night tum movement at Chimney Rock

Note:
There are no required median channelizations in the Uptown Houston section. Furthermore, there are no candidate T -intersection signal modifications.

Segment 2: Chimney Rock Road To Westerland

Phase One Priority

Proposed Median Closure Locations
Median eest of Old Farm
First two medians east of Fondren
First median west of Jeanetta

Proposed Median Channelization Locations

Median west of Bering

Three medians west of Fountainview
Median west of Greenridge
Median eest of Winrock
Two medians west of Winrock
First two medians west of Hillcroft
Median west of Old Farm
Median west of Dunvale
Second median west of Jeanetta
Two medians east of Westerdand

Proposed Left Turn Bay Extension Locations

- Eastbound tum bay at Fountainview
- Create double westbound tum bay at Fountainview - Eastbound and westbound tum bays at Hillcroft/ Voss Westbound tum bay at Dunvale
- Add exclusive northbound tum lane on Dunvale

Westbound tum bay at Fondren
Proposed Signal System Improvement Projects

- Install new signal controller and maintain vehicle detectors
for system operation and synchronization
Provide program for signal system timing optimization and system operation

Phase Two Priority

Driveway Consolidation

North side of Westheimer

Eliminate first driveway west of Chimney Rock, improve seoond driveway
Eliminate first driveway east of Augusta, improve second driveway
Eliminate first driveway west of Augusta, improve second driveway
Eliminate first driveway west of Fountainview
Eliminate first driveway west of Nantucket, improve second driveway
Eliminate second driveway west of Potomac
Eliminate second driveway east of Briar Ridge, improve first driveway

Eliminate first and second driveways west of Briar Ridge
Eliminate first, third, and sixth driveways west of
Briarhurst, improve second driveway, channelize fourth and fifth driveways

Eliminate second driveway west of Marilee
Eliminate first driveway east of Voss, improve second driveway
Eliminate fourth driveway east of Voss, improve third driveway and connect with adjacent gas station
Eliminate first and seventh driveways west of Voss,

Segment 2: Chimney Rock Road To Westerland

Phase Two Priority (continued)

improve second driveway and channelize eighth driveway Eliminate first and third driveways west of Stony Brook, improve secoond driveway

Eliminate first Driveway east of Stony Brook, improve second driveway
Eliminate second driveway eest of Old Farm, improve third drivenay
Eliminate first drivevay west of Locke Lee, improve second driveway
Eliminate first drivenay east of Dunvale
Eliminate first drivenay west of Dunvale
Eliminate first drivevay eest of Crossview, improve second driveway
Eliminate second driveway eest of Fondren
Eliminate third and fourth driveways west of Fondren, improve fifth drivevay
Eliminate first drivevay eest of Jeanetta, improve seoond driveway

South side of Westheimer

Eliminate first driveway west of Bering improve second driveway

Eliminate first two driveways eest of Augusta, improve
third and fourth driveways
Eliminate first driveway west of Augusta

Eliminate first driveway west of Fountainiew, improve second driveway
Eliminate first driveway east of Nantucket, improve first and third driveways
Eliminate second driveway east of Greenridge, improve third and fifth driveways
Eliminate fourth driveway east of Potomac, improve first driveway

Eliminate second and fifth driveways east of Briar Grove, improve third and fourth driveways

Eliminate first driveway east of Winrock
Eliminate first driveway west of Winrock
Eliminate first driveway west of Marilee, improve driveway
at Marilee
Eliminate first two driveways east of Hillcroft (make permanent - temporarily closed now)
Eliminate first, third, fifth, seventh, and ninth driveways
west of Hillcroft, improve second, fourth, and eight driveways
Eliminate first driveway east of Stony Brook, improve second driveway
Eliminate first driveway west of Hullsmith
Eliminate first driveway west of Lazy Hollow
Eliminate second driveway east of Fondren, improve first driveway

Eliminate fourth driveway east of Jeanetta, improve second and fifth driveway

Proposed Right Turn Bay Locations

- New right turn bay for westbound at Fountainview

New right turm bay for eastbound and westbound at Hillcroft/ Voss

New right tum bay for eastbound at Dunvale
New right turn bay for eastbound and westbound at Fondren

Segment 3: Westerland to Woodland Park (Westchase District section)

Phase One Priority

Proposed Median Closure Locations

- Median west of Gessner (close eastbound left only)
- Median east of Blue Willow (remove as part of underpass design)
- Median east of Walnut Bend
- Median east of Wilcrest (close eastbound left only)

First median west of Wilcrest
First median east of Hayes
First and second medians east of Woodland Park
Proposed Median Channelization Locations

Median eest of Tanglewilde

- Median west of Tanglewilde

Median east of Gessner
Median west of Briarpark (upgrade channelization)
Median east of Seagler
Median west of Seagler
Median west of Rogerdale

- Second median east of Walnut Bend

Third median east of Walnut Bend
Median west of Walnut Bend
Second median west of Walnut Bend and add eastbound left tum lane

Proposed Left Turn Bay Extension Locations

. Northbound left tum bay at W. Sam Houston Tollway East Frontage Road
Southbound left tum bay at W. Sam Houston Tollway West Frontage Road
Westbound left tum bay at Walnut Bend Lane

- Westbound left turn bay at Wilcrest

Create double northbound left tum bay at Wilcrest

- Create double southbound left tum bay at Wilcrest

Proposed Signal System Improvement Projects

- Install new signal controllers for system compatibility
- Repair existing signal interoonnect and vehicle detectors as needed for system operation and synchronization
Provide program for signal system timing optimization and system operation

Phase Two Priority

Proposed Driveway Consolidation Locations

North side of Westheimer

Eliminate first driveway east of Tanglewilde, improve second driveway
Eliminate first driveway east of Gessner, improve second driveway
Eliminate third driveway to the west of Seagler, improve fourth driveway
Eliminate fifth driveway to the west of Seagler, improve sixth driveway
Eliminate first driveway to the east of Rogerdale, improve second driveway
Eliminate sixth driveway to the east of Walnut Bend, improve seventh driveway
Eliminate third driveway to the west of Walnut Bend, improve fourth driveway
Eliminate first and second driveway to the west of Lake Side Country Club Drive
Eliminate first driveway to the east of Wilcrest
Install driveway and add eastbound left tum bay at seoond median opening east of Wilcrest
Eliminate third and fourth driveways west of Wilcrest and install new driveway in between
Eliminate first and third driveways west of Hayes, improve

Segment 3: Westerland to Woodland Park (Westchase District section)

Phase Two Priority (continued)

seoond and fourth driveways

- Eliminate third driveway east of Woodland Park, improve fourth driveway

South side of Westheimer
Eliminate first driveway west of Wilcrest, improve second driveway
Eliminate first driveway west of Westerland, improve second driveway
Eliminate first driveway east of Rockyridge, improve second driveway
Eliminate first, third, and fifth driveways east of
Tanglewilde, improve second and fourth driveway Eliminate first driveway west of Tanglewilde, improve sec ond driveway
Eliminate fourth, fifth, and seventh driveways east of

Gessner, improve sixth driveway

- Eliminate first driveway to the west of Walnut Bend improve second driveway

Proposed Right Turn Bay Locations

New right tum bay for westbound right tum movement at Gessner

New right turn bay for northbound night turn movement at Gessner

New right tum bay for eastbound right tum movement at Rogerdale
New right turm bay for westbound right tum movement at Wilcrest

Segment 4: Woodland Park to State Highway 6

Phase One Priority

Proposed Median Closure Locations

First and second medians west of Woodland Park
First median west of Kirkwood
First median west of Westminster Plaza
First median west of Shadowbriar
First median west of Shadowview
First median west of Dairy Ashford
First median west of Ashford Park
First three medians west of Ashford Oak/ Briarwest
First median west of Synott
First three medians west of Eldridge Pkwy
First median west of Windchase
First median west of Panagard
First two medians west of Westhollow

Proposed Median Channelization Locations

First median east of Old Westheimer

- First two medians west of Old Westheimer

Median at Westminster Plaza

- Median at Shadowbriar

Median at Shadowview

- First two medians east of Dairy Ashford

Median at Ashford Park

- Median at Gentryside

Median at Panagard
Second median west of Panagard
Proposed Left Turn Bay Extension Locations
Eastbound and westbound at Dairy Ashford
Double eastbound and westbound at Eldridge Pkwy

Proposed Signal System Improvement Projects

Install new signal controllers for system compatibility Repair existing signal interoonnect and vehicle detectors as needed for system operation and synchronization
Provide program for signal system timing optimization and system operation

Phase Two Priority

Driveway Consolidation

North side of Westheimer

Eliminate first and third driveways west of Crescent Park, improve second driveway
Eliminate second driveway east of Kirkwood, improve first driveway
Eliminate first driveway west of Kirkwood, improve second driveway and channelize third and fifth driveways
Eliminate first driveway west of Gray Falls, improve second driveway
Eliminate first driveway east and first driveway west of Westminster Plaza, improve driveway at Westheimer Plaza Channelize second and third driveways west of Shadowview
Eliminate first and third driveways east of Dairy Ashford, improve second and fourth driveways
Eliminate first driveway west of Dairy Ashford, improve second driveway
Eliminate first driveway east and first and second driveway west of Westhollow, improve third driveway east (Driveway should be realigned to the west so that it allows acoess for eastbound traffic to enter shopping oenter safely)

Eliminate first, third, and fifth driveways east of Briargreen, improve second and fourth driveways

Eliminate first driveway west of Briargreen, improve seco

SHORT-RANGE IMPROVEMENTS

Phase Two Priority (continued)

ond driveway
Eliminate third driveway west of Briargreen, improve
fourth driveway
Eliminate first driveway east of Highway 6, improve second driveway

South side of Westheimer

Eliminate first driveway west of Shadowbriar, improve sec ond driveway
Eliminate second and fourth driveways east Shadowiew, improve first and third driveways
Eliminate first driveway west of Shadowview, improve second driveway
Eliminate first, fourth, sixth, and eighth driveways east of Dairy Ashford, improve second, seventh, and ninth drive ways
Eliminate first driveway west of Dairy Ashford, improve second driveway
Eliminate first two driveways west of Ashford Park,
improve third driveway
Eliminate second driveway east of Ashford Park, improve
third driveway
Eliminate first driveway east of Ashford Oaks, improve second driveway
Eliminate first, third, and fifth driveways west of Ashford

Oaks, improve second and fourth driveways
Eliminate fourth driveway west of Synott, improve third driveway

- Eliminate first driveway east of Eldridge, improve second driveway
Eliminate fourth driveway east of Panagard, improve third driveway
Channelize first and secoond east of Briargreen
Eliminate first driveway east of Highway 6, improve second driveway

Proposed Right Turn Bay Locations

Install eastbound and westbound at Dairy Ashford Install eastbound and westbound at Eldridge Pkwy

Transit Short-Range Improvements

In addition to the roadway improvements described above, a series of short-range and long range transit improvements also were studied. The resulting recommendations are pre sented on this and the following pages

Bus Route Efficiency Improvements

To improve local bus servioe route efficiency, bus stops should be consolidated and route schedules improved. This will improve bus travel times and reduce points where traffic congestion and queuing oocurs behind stopped buses

Locations listed below for bus stop consolidation and removal are recommended based solely on bus boarding and alighting information. Other route efficiency factors, further review, and coordination with METRO are neoessary to determine final locations

- Ashford Park - Inbound and Outbound

Blue Willow - Inbound and Outbound
Briargreen - Inbound and Outbound
Briarwest - Inbound and Outbound
East Rivercrest - Inbound and Outbound
Lakeside Estates - Outbound
Old Farm- Outbound
Panagard - Outbound

- Shadowbriar - Inbound and Outbound
- Shadowview - Outbound
- West Rivercrest - Inbound and Outbound
- Wal-Mart - Inbound and Outbound

Wallingford - Inbound and Outbound

- Westminster - Inbound and Outbound

Windchase - Inbound and Outbound

- Woodland Park - Inbound and Outbound - 10260 Westheimer - Outbound

Express Bus Service

A pilot express bus servioes should be developed along the conidor to establish the feasibility of permanent express bus servioes. This will increase transit options, improve mode share along the corridor, and reduce traveler dependence on automobiles

Implementation of the projects listed below will require coordination with METRO.

Beltway Express (New Servioe) - Develop an express route linking a new Park and Ride lot near Beltway 8 and Westheimer to Downtown Houston. Temporary Park and Ride facilities can be established at locations where available parking is not being utilized fully during the week, such as churches.

- Voss Crosstown - Develop new servioe linking Westheimer,

Hillcroft/ Voss bus routes

West Oaks Link Limited service - Develop express route with limited stops using a unique transit vehicle to distinguish from local servioe. Proposed limited stops serving Park \& Ride or transit centers near State Highway 6, Beltway 8, Hillcroft/Voss, Galleria and Greenway Plaza Connector between Northwest Transit Center and Westpark Transit Center - providing more connectivity to Westheimer routes from the north and south sides of Uptown.

Bus Service Streamlining

Increasing the frequency of bus servioe along Westheimer and streamlining servioe will increase transit options and mode share along the conidor

Implementation of the projects listed below will require fur ther study and coordination with METRO Route planning staff.

- Streamline local bus service along Westheimer to ensure that users can easily aocess bus service that runs in a linear pattem between Loop 610 and Highway 6 without diversions.
Increase servioe frequency to attract more riders, and to reduce time spent at major stops.
Improve timed transfers for connecting transit servioe.

Park \& Ride Lots

New Park \& Ride lots should be developed in underutilized parking facilities in partnership with local businesses and developers. This will increase transit options and mode share along the corridor

Implementation of the Park \& Ride projects listed below will require coordination with METRO planning staff.

West Beltway Park \& Ride Lot - Locate site, potentially in partnership with a private developer, from which to operate park and nide servioes for travelers bound for Downtown, Uptown, Greenway Plaza, and other major activity oenters.

West Oaks Park \& Ride Lot - Provide the location for Park \& Ride and Park \& Pool activities in the West Oaks Mall area, and servioe connections to major activity oenters.

Temporary Park and Ride Lots duning Katy Freeway reconstruction - Locate potential sites for temporary Park \& Ride facilities to be operated while the Katy Freeway reconstrucion is oocuming. This could also be utilized as a way to pilot test locations for permanent facilities to be established. Potential sites include underutilized parking areas in shopping facilities and churches

Circulator Systems

Bus circulator systems should be created in highly developed areas. Systems in Uptown and Westchase should be improved or expanded. This will provide bus servioe for short trips, increase transit options, and reduce auto vehicle trips, particularly at midday.

Implementation of these projects will require coordination with METRO planning staff as well as representatives of Uptown and Westchase.

- Uptown Area Bus Circulator
- Westchase Bus Circulator

Transit Longer-Range Improvements

Bus Pull-Outs
Bus pullouts should be installed at highly used bus stops and major intersections. This will reduce vehicle congestion and queueing behind stopped buses

Implementation of bus pullouts at the locations listed below will require further study and coordination with METRO Route planning staff.

Outbound Stops	Inbound Stops
Augusta	Augusta
5030 Westheimer	Bering
Dunvale	Greennidge
5300 Block	Lazy Hollow
Greennidge	Marilee
MoCue	MoCue
Nantucket	Sage
Sage	Winrock
Winrock	Yorktown
Yorktown	

Summary of Longer-Range Transit Recommendations

Bus Pullouts
High Capacity Transit
Transit Centers

Introduce High Capacity Transit

Infrastructure for high capacity transit operations should be provided. Increasing transit options through high capacity transit has been demonstrated to increase transit mode share along corridors.

Implementation of the projects listed below will require further study and coordination with METRO planning staff.

- Rapid Bus or Light Rail Transit - Within the median or along the curb lanes, provide for high capacity transit operations.
- People Mover - Create a people mover along Post Oak Boulevard to provide activity oenter level circulation to transit riders who would be taking other servioes to and from the Northwest and Westpark transit centers.

Transit Centers

Additional transit oenters should be constructed at key loca tions evidenced by high ridership and route transfers. The convenience of transit centers increase transit options and mode share along the corridor.

Implementation of the projects listed below will require further study and coordination with METRO Route planning staff.

Transit Center at Hillcroft/ Voss and Westheimer potentially associated with redevelopment of existing commercial sites

Transit Center, potentially a linear transit oenter, located near the intersection of Westheimer and Post Oak

Conceptual Cost Estimates for ShortRange Improvements

In order to evaluate implementation, conceptual-level cost estimates were prepared for the short-range improvement strategies discussed in detail above. The high and low oost estimates (A) for the seven improvement types were based primarily on Texas Department of Transportation (TxDOT) bid items and average unit prioes. Where applicable TxDOT's bid item code, description, and units are used. For those items for which TxDOT oodes were not available descriptions, units, and prioes have been assumed.

Bonds (B) at 5% of the cost of all items, and Mobilization (C) at 20% of the cost of all items are included in the high and low estimates for each improvement type. Misoellaneous \& Contingency (D) at 20% of the sum of $\mathrm{A}+\mathrm{B}+\mathrm{C}$ also is added to arrive at the initial high and low oost estimates for each improvement type. Misoellaneous items include Engineering Design Fee, Survey, and Material Testing

The high oost estimates take into consideration the quantification of: 1) larger reoonstruction area; 2) any above ground, non-recurning utilities; 3) any below-ground, non-recuming utilities; 4) right-of-way; 5) landscaping; 6) METRO bus shel ters; 7) any other items.

The low oost estimates take into consideration: 1) the smallest reconstruction area and, 2) all recuming common items required to be removed and reconstructed.

Note that the estimates shown in this report are preliminary and subject to change depending on the location and the time of such reconstruction. The final cost estimate for a particular improvement type could even be lower than the ow estimate shown in this report or could go over the high estimate

See the Appendix for further details on the estimates for all improvement types.

How costs are estimated
(A) Materials and Labor (for the various items involved in the construction)
(B) Bonds (insurance that the contractor will complete the work)
$=5 \%$ of (A)
$+$
(C) Mobilization (the cost for the contractor to get equipment and workers to the site to begin construction)
$=20 \%$ of (A)
(D) Miscellaneous and Contingency (to cover engineering, construction management, and unforeseen conditions)
$=20 \%$ of $(A)+(B)+(C)$

Total Estimated Cost $=(A)+(B)+(C)+(D)$

Section IV

Long-Range Improvements

The Westheimer Villages Concept is not meant to dictate site-specific development. Instead, it provides conceptual ideas for achieving renewed development along different sections of Westheimer resulting in improved traffic movement and generating greater pedestrian and commercial activity.

Westheimer Villages Concept

The existing development pattem along Westheimer Road alienates pedestrians and drivers. Exoessive curb cuts and median turn lanes inhibit traffic flow. Side streets often do not connect to development and fences are barniers to walking Short-term mobility improvements will resolve immediate mobility issues, but to mitigate future traffic congestion the number of auto trips must be reduced.

To reduce the number of auto trips, this report proposes changing development pattems from strip commercial to urban villages. The Westheimer Villages Conoept proposes a new pattem for development that will result in a more pedestrian friendly place. Connections between existing commercial developments and residential neighborhoods are proposed. A variety of different building types are added to cre ate a higher density of mixed-use buildings in a pedestrian friendly environment. Visitors park once and walk between multiple destinations. By parking once and walking more, fewer parking spaces are needed and auto trips are kept off Westheimer. Vehicular circulation in parking lots will better connect to side streets and control acoess to adjacent neighborhoods reducing cut-through traffic and further reducing the number of auto trips on Westheimer.

The Westheimer Corridor lacks a oohesive positive identity. The streetscape varies with lushly landscaped corporate centers mixed with spartan retail oenters, large disoount outlets, and wom out commercial properties in need of renovation and updating To help tum different sections of the cornidor around and create a distinctive Westheimer character, a fourphase Westheimer Villages Conoeptual plan has been developed to help guide new development.

The four phases of the Westheimer Villages Conœeptual Plan include the following:

Phase One - Implementation of an Urban Design Program to reduce curb cuts and set in motion streetscape improve ments such as street trees, median plantings, crosswalk and intersection enhanoements, and spacious sidewalks These improvements will help to streamline traffic flow, focus acoess into activity oenters, and provide an inviting street environment to help foster pedestrian activity.

Phase Two - The beginning stages of new development pat-

tems, including mixed-use complexes and structured parking garages replacing surface parking lots; modified commercial structures; and bus transit stations

Phase Three - This phase continues the development pattems taking place in Phase Two; however, these pattems become more complex and start to come together to create a pedestrian-oriented street. In addition, the street grid starts to expand into broad areas of either vacant land or low-use sites, such as surface parking lots.

Phase Four - This final phase is the fruition of the of the study area

Westheimer Villages Conoept in which higher-use development pattems have transformed the areainto a pedestrian-oriented place. Lower-use sites are replaced by projects with higher densities to meet new market demands. Connections between different properties provide shade and protection from the hot sun and downpours. Altematives are provided within the community for living, working, and playing Traffic flow can work to peak levels; however, the emphasis on the development pattems is oriented to the pedestrian and to getting people out of their cars. Seoondary streets in the oommunity are designed to a pedestrian scale.

The five conceptual villages listed below were selected as examples of the types of development patterns found along the corridor. Each proposed village has unique challenges, but each represents development characteristics found in many locations along Westheimer.

West Houston Village
Westchase Village
Briargrove Village
Chimney Rock Village
Uptown Village

Implemented in phases, the Westheimer Villages Conoept will sprout in each area changing development pattems along the Westheimer corridor into a string of urban villages

Mobility Benefits from Urban Villages

Reduction of automobile trips will lead to mobility and air quality benefits
ability to park at one place rather than having to drive to multiple destinations

Interconnected street grid will provide more route options for both cars and pedestrians reducing congestion on Westheimer

Increased pedestrian activity will: have air-quality benefits have personal health benefits help in creating a greater sense of community increase economic activity in the area

Alternate lifestyle options available to people ability to live, work, and play in close proximity

Once the Katy Freeway re-construction commenoes, com muters will seek altemative east - west routes such as Westheimer, bringing more congestion and frustration for motorists and businesses alike. As Phase One of the plan recommends, TxDOT, the City of Houston, and METRO should make short-range mobility improvements immediately to prepare the Westheimer comidor for the anticipated additional traffic. To capitalize on the traffic improvements, West Houston developers, the Westchase District, the Uptown Houston District, and property owners along the corridor, should beautify the streetscape and landscape to improve the image and perception of the area to altract potential cus tomers. Businesses need to prepare to benefit from the additional commuters.

Public entities such as TxDOT and the City of Houston are responsible for public safety and infrastructure in the entire comidor. Westchase and Uptown Districts supplement public agency servioes and make additional improvements and maintenanoe within their boundaries to make Houston a better place. However, there are gaps along the way where no organized community group collects taxes or assessments to take care of the area. For these under-represented areas, a new alliance of property owners should be organized to take care of the public rights of ways and medians.

Implementation of the ideas identified in this report will be by many different entities The report recommends that TxDOT make immediate median and tuming lane improvements and that the City of Houston and METRO make signal improvements. Beautification and maintenance improvements between Woodland Park and Westerland should be made by the Westchase District and between Chimney Rock and the West Loop IH 610 by the Uptown Houston District. The areas west of the Westchase District and between Westchase and Uptown will need to be taken care of by others.

In the westernmost reach of the study area, Camden Properties and Royal Oaks are the largest landowners. Others interested in the area between Old Westheimer Road and Woodland Park shouldjoin them to coordinate improvements to the public rights of way. A logical organization that could lend technical assistanoe in westemmost Westheimer would be the West Houston Association and the City of Houston's Planning and Development Department's Super Neighborhood Program

Property owners between the Westchase and Uptown Houston Districts have not organized as one unified body to plan for the public well being of the area. The City of Houston Super Neighborhood Councils in the area should create an allianoe of interested property owners. This report suggests calling the new group "the Westheimer Allianoe."

The Allianoe would oversee improvements along the cornidor between Westerland and Chimney Rock and coordinate with the adjacent Westchase and Uptown Districts. The Alliance also may be organized to include other areas along the cornidor, if there is interest.

For a consistent image throughout the Westheimer Coridor, streetscape and landscape treatments need to be coordinated. Public infrastructure improvements by TxDOT and the City of Houston should be better than current span wire signals, wooden pole street lights, and barren concrete and asphalt. Unsightly overhead utility wires should be relocated or buried to open up views. Landscape improvements such as street trees, parking lot shrubbery, and median plantings should meet a higher standard of quality. Streetscape elements such as signs, signals, streetlights, benches, and pedestrian amenities, should distinguish the Westheimer conidor. Westheimer has the potential to be a symbol of quality for Houston as Ward Parkway is for Kansas City, and Commonwealth Avenue is for Boston. The public infrastructure, overhead utilities, and landscape and streetscape improvements should be coordinated. This report recommends that new Urban Design Guidelines be developed and coordinated with TxDOT's short-range mobility improvements.

An area that is targeted to receive new public or private investment may be a likely candidate for the Westheimer Villages Conoept. When identified, a sponsoning organization such as H-GAC or the City of Houston should meet with neighborhood leaders and organizations to explain the urban Westheimer Villages Conoept and obtain important feedback regarding residents' and businesses' conoems and expecta tions. The sponsoring organization should fund a market study of the target area to determine the potential of the conoept. Village soenarios may inoorporate oommunity facilities such as new polioe and fire stations, libraries, parks, health facilities, and multi-servioe centers that oould serve as natural gathering places for community activities.

Incentives, such as varianoes, for development that follows the recommendations of the Westheimer Villages Conoept should be offered by the City of Houston Planning \& Development Department. Suggestions include reducing set-back requirements and adjusting parking requirements within the village.

Descriptions of five different Westheimer Villages Conoepts for Westheimer are illustrated on the following pages

The Houston-Galveston Area Council (H-GAC), TxDOT, Westchase District and Uptown Houston District are the sponsors of this report and will continue to offer assistance related to the planning and implementation of mobility and quality of life issues in the region and within the corridor.

The five areas selected along Westheimer as examples of the types of existing development patterns found along the cornidor are illustrated in Figure 4.1. A long-range vision has been formulated for each of these areas to transform them from their current oonditions to urban villages. The five village areas are:

West Houston Village

This area is representative of westem Westheimer that has tracts of vacant land surrounding newly built commercial centers and a mix of multi-family and single family residenoes. Coridor improvements in this type of village would take place as this area develops and expands into the sumrounding vacant lands.

Westchase Village

The proposed Westchase village is within close proximity to the Sam Houston Tollway. Conporate office towers, multifamily complexes on the south, and single family residenoes
on the north sumound this umban village today. This area contains a number of neighborhood shopping centers with acres of parking spaces fronting along Westheimer. The existing roadway network in this village area would be modified to make better use of surface parking areas to help define the community's character. Improvements in this village are planned and implemented by the Westchase District.

Briargrove Village

This is an older area of low-rise commercial buildings surrounded by aging multi-family complexes. The surface parking lots in this area are comparatively smaller but there are numerous curb cuts Improvements in this area would focus on streamlining traffic flow and redefining the character of the corridor.

Chimney Rock Village

This area is characterized by a mix of mid- and high-nise office buildings and low-rise commercial structures with sup-
porting surface parking lots adjacent to Briarcroft and Uptown neighborhoods. Corridor improvements for this village type would maintain existing higher-density developments and replace lower-density developments and surface parking lots with higher-density mixed-use structures.

Uptown Village

This area represents an existing urban core with a oonoentra tion of high-end offioe, retail, lodging, entertainment, and multi-family residenoes. Improvements in this village are planned and implemented by the Uptown Houston District.

Figure 4.1: Village locations along the study area

LONG-RANGE IMPROVEMENTS

WEST HOUSTON VILLAGE
Phase 1

Phase One improvements would start with the Urban Design Program of streetscape improvements along Westheimer, as well as prominent roadways that feed into it. Improvements in this phase would include a consolidation of curb cuts to help streamline traffic movement and direct traffic into existing developments

Phase 2

In Phase Two, improvements would start to impact the existing development pattem by attracting new developments and modifying the existing ones at key intersections. The new mixed-use developments would replace some of the existing surface parking lots fronting major roadways and acoommodate parking needs in intemal parking garages. Transportation improvements would include the addition of a bus transit station adjoining a mixed-use complex. Some existing retail oenters would continue to exist as they are until new development pattems catch up.

Phase 3

In Phase Three, the development pattems in the village would become more complex, the complexity serving to bring the developments together into a cohesive pedestrian-oriented community. As more surface parking lots give way to new mixed-use developments and internal parking garages, the street grid, enhanoed with streetscape improvements, would start to expand into the nearby vacant land, as well as into the modified retail oenters

Phase 4

In Phase Four, the remaining surface parking lots would give way to the pressures of development brought on by incressed density. The street would beoome the main oenter of activity, spurred on by ground floor retail and offioe and residential uses on the upper floors. The structured parking facilities would be built with ground floor retail or incorporated as internal structures within the mixed-use developments. An open area would be set aside as a commumity park. Collector streets that connect into the village area will also be developed with streetscape improvements to enhanoe pedestrian activity.

West Houston green fields are prime candidates for village development offering the greatest opportunities to implement the Westheimer Villages Conoept. The West Houston Village Conoept oelebrates Westheimer as West Houston's Main Street. The thoroughfare is streamlined, but also comple ments additional pedestrian activity. This pedestrian activity reduoes traffic congestion getting people out of their cars to enjoy foot traffic. Gone are the numerous curb cuts and median cuts along Westheimer. In its place is a tree lined roadway, with landscaped medians and bricked crosswalks, that define and respect the pedestrian space. Less than a block away, a METRO bus transit stop is tied into an adjoining mixed-use retail and office oenter.

This urban village offers a range of servioes and attractions. Retail establishments are a mix of upscale boutiques, specialty shops, neighborhood servioes, and general mass merchandise stores. Businesses cater to residents living in apartments and lofts above the street-level shops as well as the households from the surrounding neighborhoods. Parking is aocessible by using either curbside parking on side streets, off-street surface parking enclosed in a building courtyard, or multi-level parking garages tucked away behind building facades A park or urban square in the village provides a further anchor where people can come together and enjoy the neighborhood.

The West Houston Association and organized neighborhoods may provide organization and technical assistanoe for the West Houston Village. The Association promotes improved infra structure and servioes in the area and advocates expanding transportation system capacity while enhancing quality growth. As the clearinghouse of information for commercial and residential development in West Houston, the West Houston Association will share information related to Westheimer improvements to those who contact them.

LONG-RANGE IMPROVEMENTS

WESTCHASE VILLAGE

Phase 1

In Phase One, the Urban Design Program would be implemented through streetscape improvements and consolidation of curb cuts. These meesures would create a more pedes-trian-friendly environment, facilitate traffic movement, and direct acoess into existing developments

Phase 2

Phase Two improvements would focus on modifying the existing development and enoouraging new development along major streets and at key intersections. This would start to create a pedestrian scale environment with retail uses and restaurants at the ground level and office and residential uses on the higher floors. A bus station would be provided in the center of the corridor village, either as a stand-alone structure or connected with a mixed-use complex.

Phase 3

Improvements in Phase Three would expand on developments begum in Phase Two. New mixed-use complexes would be built with intemal parking garages or connected to parking garages with ground level retail. The existing street grid would be extended by modifying existing structures and parking lots to allow for through-street connections and the development of secondary streets in front of the modified retail centers. This extended street system would incorporate streetscape improvements introduoed in Phase One.

Phase 4

Activity in Phase Four would focus on infill development in the remaining surface parking lots in the village. This would involve modification of existing retail centers and development of new mixed-use structures with intemal parking garages. Stand-alone structures, such as bus stations, would be incorporated into new developments to create a vibrant street environment of retail shops and restaurants and pedestrian plazas. The expanded street grid would tie into the surrounding residential neighborhoods.

Within walking distance of the office towers, and conporate campuses that line the Sam Houston Tollway, Westchase Village is a relatively high-density, mixed-use enclave of residents, workers and shoppers. Westheimer runs through the middle and is an essential element in unifying this urban village. The street would be redesigned with landscaped medians, tree-lined property frontages, spacious sidewalks, and bricked crosswalks at key intersections. Side streets are treelined as well and former acres of strip oenter parking lots would be broken down into organized street grids with whole blocks of development.

The village would have street-level retail and restaurants Big box anchors could oocupy the eastem end of the urban village near the Tollway while at the westem end could be special home acoessory and apparel retailers. Intermingled with the shops on the side streets would be restaurants and other servioes and establishments focusing on special needs. Parking would be handled using multi-level garages, off-street surface lots, or curbside spaces. Above the shops and the street retail activity would be multi-level offioes, hotels, and residenoes People could live, work, and play within this urban village. The uman design of Westchase Village allows it to blend in and complement adjaoent neighborhoods and offioe parks.

Along Westheimer between Woodland Park and Westerland, the Westchase District is organized to promote and enoourage economic development, public safety, area mobility, and area marketing Westchase will work directly with TxDOT duning the design of the short-range Westheimer mobility improvements and will be responsible for the beautification of medians and public rights of way within their boundaries. Landowners and developers interested in Westchase properties along the Westheimer Cornidor should contact the Westchase District at (713) 780-9434. Information is available on the Intemet at wwwwestchasedistrict.com.

LONG-RANGE IMPROVEMENTS

BRIARGROVE VILLAGE

Phase 1

Phase One improvements would put into action the Urban Design Program of streetscape improvements and curb cut consolidation to enhanoe mobility and improve pedestrian acoessibility.

Phase 2

In Phase Two, development pattems would start to take place at notable key intersections in the village, with buildings brought up to the street-side instead of being set far back behind parking lots. New development would start to replace surface parking arees and old, obsolete structures. During this phase, a bus station would be built near the oenter of the village commumity such that it is within walking distanoe from major intersections and high-density residential complexes

Phase 3

Development pattems would become more complex in Phase Three. More surface parking areas would give way to structured parking and mixed-use developments. Mixed-use developments, some of which would be high-rise office and residential buildings, would become the dominant building type along Westheimer. As density increases, an expanded street grid would evolve, providing easier aooess to the village from the sumrounding areas. Buildings with street level restaurants and retail would promote pedestrian activity on the side-streets.

Phase 4

In Phase Four, all surface parking arees would have been replaced with higher-density mixeduse structures built with intemal parking garages or built around parks or public squares Residential structures with structured parking would buffer the village and blend into the surrounding multi-family complexes outside the village. Collector streets and roads that lead from multi-family complexes into the village also would be developed and designed to provide greater connectivity between uses within the village and arees surrounding it.

The urban design plan for Briargrove Village provides a seamless fit with the older multi-family oomplexes sumounding this area. Streets that feed traffic onto Westheimer from the apartment complexes also would attract foot traffic into the newly created pedestrian-scale urban fabric. The Westheimer streetscape would undergo a change from the present old, low-rise detached structures and numerous curb cuts to a landscaped, tree-lined drive. An improved Westheimer would streamline traffic movement and enoourage pedestrian traffic and movement. Parking for the residential and oommercial activities within this urban village would be provided as side street curbside parking, off-street surface parking, and in multi-level garages placed behind mid-nise structures and storefronts Briargrove Village would feature both village

squares and smaller pocket parks as places where people can gather to pass the day, enjoy a lunch, or feed the birds. In close proximity to these green spaces would be retail and restaurant establishments that would cater to local residents, as well as to others who choose to enjoy the village atmos phere. Above these shops would be the residenoes and offioes oontributing to the eclectic urban village character.

The retail, entertainment, and dining market is exoellent for this village. Affluent Memorial Villages residents have direct aocess on Voss Road; one of the few thoroughfares with bridge aocess over Buffalo Bayou and northward to I-10. Significant cross streets in the area such as Fondren, Voss, Hillcroft, Briargrove, Fountainview, Bering, and Augusta con-

nect to vital neighborhoods of single family homes, town homes, and apartments. South of the proposed village is the westem end of the Richmond Avenue nightclub district.

The proposed Westheimer Alliance would monitor progress implementing the Briargrove Village plan and coordinate recommendations with the City's Capital Improvements Plan.

LONG-RANGE IMPROVEMENTS

CHIMNEY ROCK VILLAGE
Phase 1

Phase One improvements would start with an Urban Design Program of streetscape improvements and a reduction in curb cuts Such improvements would streamline traffic movement and help in building a character for the corridor.

Phase 2

Phase Two would involve the development of office, retail, and mixed-use complexes to replace sufface parking lots and obsolete commercial oenters at key intersections. These new complexes would have intermal parking garages to acoommodate parking needs and would provide ground floor retail fronting onto the street with other uses in the floors above. A bus station for the village would be located at the end where extensive development would take place

Phase 3

The improvements started earlier continue into Phase Three to form a better definition of the village character. A grid of secoondary streets would begin to evolve from the major roadways into arees formely occupied by low-grade commercial strip centers Mixed-use developments surrounding intemal parking garages and retail oenters with parking structures would become common elements. Residential complexes would be built along secondary streets to complement the new urban setting and the existing residential neighborhoods.

Phase 4

In Phase Four, the side of the village that had not previously experienoed growth would be more extensively developed. Collector streets leading into and from the village would be designed to help tie the village into the surrounding residential neighborhoods

Chimney Rock Village is less dense than the other three urban villages, to intermingle with existing neighborhoods Retail and offioe development would be brought up to the street and a METRO transit center would be in close proximity. The village development plan would combine urban design street improvements such as landscaping in the median, treelined property frontages, spacious sidewalks, and bricked crosswalks to help through traffic movement along the coridor and provide a better environment for pedestrians Parking would be moved away from large lots fronting on Westheimer to curbside parking on side streets, off-street parking in surfaæe level courtyards, and multi-level garages incorporated into building structures

Several anchor stores and smaller shops would add to the storefront mix. Chocolate bars, ooffee shops, and hometown favorite restaurants would allow local residents and shoppers to stop and let their senses be tempted. Mixed in with these shopping and eating locales could be foreign cinemas, gallevies, and flonist shops, with residenoes and offioes oocupying the floors overhead.

The village is adjaoent to the Uptown District, the Galleria, and affluent Briarcroft and Tanglewood neighborhoods. There is direct acoess on Chimney Rock Road to I-10 and US 59. Chimney Rock is the only thoroughfare between Voss Road and the West Loop with a bridge over Buffalo Bayou

connecting to I-10. South of the proposed village is the eastem end of the Richmond Avenue nightclub district.

The proposed Westheimer Alliance would monitor progress implementing the Chimney Rock Village plan and would coordinate recommendations with the City's Capital Improvements Plan.

East of Chimney Rock, property owners created the Uptown Houston District in the area sumrounding the Galleria shopping mall to supplement efforts by public agencies in planning and implementation of public projects. The Uptown Houston District is involved with the implementation of transportation improvements, economic development initia tives, traffic control, street sweeping, beautification, and commumications programs. The District has created a Master Plan to address mobility and quality of life issues, and the plan's acoomplishments can be experienoed in the area. More improvements are planned for the District and some of the key elements from the Uptown Plan are being reiterated here

to reinforoe their importance in improving mobility and enhancing community character.

Direction/ Guide Signage

Reduce travel and delay by providing directional/ guide signage that assists motorists to major attractions and parking

Proposed Projects:

Develop a directional/ guide sign program for primary aocess points to and from Westheimer Road in coordina tion with Uptown area requirements.

Pedestrian Network Improvements

- Reduce intemal auto trips within Uptown and expand pedestrian activity and safety.
Improve the pedestrian environment with an enhanced and continuous sidewalk network, improved linkages to transit stops, and better pedestrian crossings at major intersec-
tions.
The overall long range program should consider
Westheimer Road needs in coordination with Uptown area requirements.

Proposed Projects:

- Provide enhanoed sidewalks and pedestrian amenities consistent with land use and transit servioe needs.
Provide appropriate non-intersection (mid-block) pedestrian crossing locations similar to the Dillards/ Neiman Marcus pedestrian crossing location.
Reduce the number of driveway openings that intermupt pedestrian traffic along sidewalks.

Street Network Improvements

Develop a street grid system in the Uptown area to provide altemate routes and intemal circulation as relief to oongested arterials. Projects should include extension and improvements on existing streets and new streets in coordination with Uptown area requirements.

Proposed Projects:

- Extension of MoCue Street to San Felipe.
- Widening of Chimney Rock, Rice, Sage, and MoCue from Westheimer to US 59 (Southwest Freeway and Westpark Tollway.

This initial list is based on a limited review of overall mobility needs. Further study and coordination with Uptown is required.

The Uptown Houston District works to obtain and provide a variety of servioes and improvements for the Uptown area. Uptown economic development information can be obtained from the Uptown Houston District at (713) 621-2011, or on the Intemet at wwruptown-houston.com.

Section V

Conc/usion

Conclusion

This study examined mobility conditions along the Westheimer Corridor and presented short-range and longrange improvement strategies. The short-range improvement strategies were analyzed with traffic modeling software to demonstrate their ability to make mobility improvements.

The short-range strategies centered around acoess management to improve traffic flow. Aocess management techniques are cost effective means to reduce delay for through-movement and to improve roadway safety for motorists and pedestrians. Several improvement projects were recommended for implementation in a prioritized phasing.

Phase One: Construct median closures, median channeliza tions, left tum bay extensions, and signal optimization.
Phase Two: Construct driveway consolidations, T-intersections (signal elimination), and night turn bays

In addition, several short- to mid-range transit improvements were recommended, including bus pull-outs, express servioe, bus stop consolidation, route rationalization, and park-andnde pilot projects

The long-range strategies looked at redeveloping properties along Westheimer to improve intemal circulation and connections to adjacent neighborhoods in order to take unnecessary auto trips off of Westheimer. Land use and density were linked to transportation demand. Focussing on this link allowed the creation of plans to reduce automobile trips and improve mobility. Five prototypical locations were selected for the development of urban villages, in which employment, housing, shopping, and entertainment are all available. The villages have suitable density to support transit use, and buildings and streets are arranged to maximize pedestrian trips within each village.

Similar to the short-range recommendations, the long-range urban village conoept was designed to be implemented in phases

Phase One: Implement all short-range improvements, make streetscape improvements, and inoorporate an urban design program.
Phase Two: Introduce mixed-use buildings at intersections, add some structured parking, begin modifying existing buildings, and build transit oenters.
Phase Three: Expand structured parking, construct more mixed-use buildings (housing + office + retail) at the street edge, and complete the street grid.
Phase Four. Increase density, create open space (parks, squares, plaza), and strengthen connections to sumounding neighborhoods.

The Village Equation:
 Jobs-Housing Balance
 Alternative Travel Modes
 $=$
 Automobile Trip Reduction

Consideration must be given to the ultimate typical section for Westheimer Road. A wide range of altemative typical sections, from existing conditions to a wide multi-way boulevard, has been provided in the Appendix. Decisions about Westheimer's ultimate typical section will allow for a balance between mobility and acoess, will provide for altemative travel modes (cars, bikes, transit, and pedestrians), and will create a beautiful environment equal to the greatest streets in the world.

Implementation of the short-range and long-range reoommendations will take coordination among many entities For this reason, this study proposed the formation of a "Westheimer Allianoe," made up of public and private stakeholders. The Houston-Galveston Area Council, TxDOT, METRO, the City of Houston, the management districts, property owners, and developers all have roles to play in enhancing the physical environment and improving mobility along the Westheimer Corridor.

Appendix

Short-Range Improvement Locations

Appendix
 Cost Estimates

Westheimer Corridor

Cost Estimate Summary for Short Range Improvements

Westheimer Corridor

Cost Estimate Summary for Short Range Improvements (Cpntinued..)

Segment		Improvements to be coordinated through TxDOT																				
		Median Closures (A)			Median Channelization (B)			Left Turn Bay Extension (C)			Right Turn Bay (New* or Ext.) (E)				Signalized T-Intersection (F)				Signal Hardware Improvements		Signal Timing and Operation	
		Qty.	Low Est.	High Est.	Qty.	Low Est.	High Est.	Qty.	Low Est.	High Est.	Qty.	Comment	Low Est.	High Est.	Qty.	Comment	Low Est.	High Est.	Qty.	High Est.	Qty.	High Est.
-	IH 610 to Post Oak																		1	\$15,000		
	Post Oak to McCue	2	\$32,800	\$72,600				2	\$32,600	\$44,000	1	1 Ext.	\$88,500	\$195,000					2	\$30,000		
	McCue to Sage																		1	\$15,000		
	Sage to Yorktown																		2	\$30,000		
	Yorktown to Chimney Rock	2	\$32,800	\$72,600				1	\$16,300	\$22,000									1	\$15,000		
	Totals		\$65,600	\$145,200				3	\$48,900	\$66,000	1		\$88,500	\$195,000					7	\$105,000		
\sim	Chimney Rock to Bering				1	\$12,800	\$14,200				1	New	\$88,500	\$195,000					1	\$10,000		
	Bering to FountainViem							1	\$16,300	\$22,000	1	New	\$88,500	\$195,000					1	\$10,000		
	FountainView to Greenridge				3	\$38,400	\$42,600	1	\$16,300	\$22,000									1	\$10,000		
	Greenridge to Winrock				2	\$25,600	\$28,400												2	\$20,000		
	Winrock to Hillcroft/Voss				2	\$25,600	\$28,400	1	\$16,300	\$22,000	1	New	\$88,500	\$195,000	1	Winrock	\$47,800	\$56,300	1	\$10,000		
	HillcroftVoss to Dunvale	1	\$16,400	\$36,300	5	\$64,000	\$71,000	3	\$48,900	\$66,000	1	New	\$88,500	\$195,000	2	$\begin{gathered} \text { Stoney Brook \& } \\ \text { Old Farm } \end{gathered}$	\$95,600	\$112,600	3	\$30,000		
	Dunvale to Fondren	2	\$32,800	\$72,600	1	\$12,800	\$14,200	1	\$16,300	\$22,000	2	New	\$177,000	\$390,000					2	\$20,000		
	Fondren to Westerland	1	\$16,400	\$36,300	3	\$38,400	\$42,600	2	\$32,600	\$44,000	1	New	\$88,500	\$195,000	1	Jeannetta	\$47,800	\$56,300	2	\$20,000		
	Totals		\$65,600	\$145,200	17	\$217,600	\$241,400	9	\$146,700	\$198,000	7		\$619,500	\$1,365,000	4		\$191,200	\$225,200	13	\$130,000		
∞	Westerland to Gessner				3	\$38,400	\$42,600				2	New	\$177,000	\$390,000						\$20,000		
	Gessner to Elmside	1	\$16,400	\$36,300											1	Elmside	\$47,800	\$56,300	1	\$10,000		
	Elmside to Briarpark																		1	\$10,000		
	Briarpark to Seagler				2	\$25,600	\$28,400												1	\$10,000		
	Seagler to Beltway 8				1	\$12,800	\$14,200	1	\$16,300	\$22,000									2	\$20,000		
	Beltway 8 to Blue Willow	1	\$16,400	\$36,300	1	\$12,800	\$14,200	1	\$16,300	\$22,000	1	New	\$88,500	\$195,000					2	\$20,000		
	Blue Willow to Walnut Bend	1	\$16,400	\$36,300	2	\$25,600	\$28,400	1	\$16,300	\$22,000									1	\$10,000		
	Walnut Bend to Wilcrest	1	\$16,400	\$36,300	2	\$25,600	\$28,400	2	\$32,600	\$44,000	1	New	\$88,500	\$195,000					1	\$10,000		
	Wilcrest to Woodland Park	2	\$32,800	\$72,600				1	\$16,300	\$22,000									2	\$20,000		
	Totals	6	\$98,400	\$217,800	11	\$140,800	\$156,200	6	\$97,800	\$132,000	4		\$354,000	\$780,000	1		\$47,800	\$56,300	13	\$130,000		
*	Woodland Park to Kirkwood	4	\$65,600	\$145,200															1	\$10,000		
	Kirkwood to Shadow Briar	2	\$32,800	\$72,600	,	\$64,000	\$71,000												2	\$20,000		
	Shadow Briar to Dairy Ashforg	2	\$32,800	\$72,600		\$38,400	\$42,600	1	\$16,300	\$22,000		New	\$88,500	\$195,000					1	\$10,000		
	Dairy Ashford to Ashford Oak	2	\$32,800	\$72,600				1	\$16,300	\$22,000	1	New	\$88,500	\$195,000					1	\$10,000		
	Ashford Oak to Eldridge	4	\$65,600	\$145,200	2	\$25,600	\$28,400	1	\$16,300	\$22,000	1	New	\$88,500	\$195,000	1	Synott	\$47,800	\$56,300	2	\$20,000		
	Eldridge to Windchase	3	\$49,200	\$108,900	2	\$25,600	\$28,400	1	\$16,300	\$22,000	1	New	\$88,500	\$195,000	1	Windchase	\$47,800	\$56,300	1	\$10,000		
	Windchase to Westhollow	2	\$32,800	\$72,600											1	Westhollow	\$47,800	\$56,300	1	\$10,000		
	Westhollow to Highway 6	2	\$32,800	\$72,600															2	\$20,000		
n IH 610 to Highway Grand Totals Averages		21	\$344,400	\$762,300	12	\$153,600	\$170,400	4	\$65,200	\$88,000	4		\$354,000	\$780,000	3		\$143,400	\$168,900	11	\$110,000		
																					1	\$120,000
		35	\$574,000	\$1,270,500	40	\$512,000	\$568,000	22	\$358,600	\$484,000	16		\$1,416,000	\$3,120,000	8		\$382,400	\$450,400	44	\$475,000	1	\$120,000
			\$922,250			\$540,000			\$421,300				\$2,268,000				\$416,400			\$475,000		\$120,000

Note: Right Turn Bay Improvements will have to be co-ordinated with property owners

NOILVZITANNVHD NVIGAL 9 GdXL GLVNILSA LSOO NOILDOYLSNOD KYVNINITGYd －виبиәдо ие！ 							
	00．00t＇91\＄				：agTTvo		
	01－9tを＇91\＄				：TVLOL GNVY9		
	SどtてL＇z\＄		$\% 02$	ST	KONGONILNOJ ¢ SחOEANVTTEOSIL	xxx	xxx
	SL＇IZ9＇ε I\＄				2 TVLOLGAS		
			$\% 0$ z	ST	NOILVZITIGOW	10s	00 S
	L8ttS		$\%$ ¢	ST	Sanos	xxx	xxx
OS＂081＇tて\＄ $00 \cdot 00 \mathrm{~S}^{‘} \mathrm{\varepsilon}$ \＄	0t＇L68＊01\＄				I TVLOLGOS		
	00．00s‘ ${ }^{\circ}$ \＄		I	OW		I0s	205
00．00s＇I\＄ OS．E\＄		00．00s＇IS	I	VE	GרOHNVW LSOTCV	xxx	xxx
		010\＄	$\bigcirc \mathcal{L}$	нา	（．．tて）Syy y you deyd syns $\Lambda \forall \mathrm{Vd}$	$90 ¢$	$8 \angle 9$
$00 ¢ \angle 8 \$$	0ガて\＄	010\＄	¢て	н7	（．．tて）Syyw you dgyd suns $\Lambda \forall \mathrm{d}$	90 S	$8 \angle 9$
		$00 \cdot s \geq \$$	s¢	н7		0 IS	899
	00．009\＄	$00 \cdot \mathrm{cz} \mathrm{\$}$	ヶて	H7		0 LS	899
00．000＇I\＄ $00^{\circ} \mathrm{t} 9 \varepsilon^{\prime} \mathrm{z}$ \＄	00＇000＇I\＄	00．00s\＄	τ	VE	（ V RL）WSSV NDS GSat TTVWS	10 S	tog
		00．9\＄	๖6¢	н7		sos	6 s
	$00^{\prime}+2 z^{\prime} \mathrm{I}$ \＄	00．9\＄	¢0z	H7	（．．9）（TコMOФ）qษกว วNOJ	s0s	6 ss
00＇0SL＇EI\＄		000 0 cz\＄	ss	x	（ g TJ）（ONOD）dVYdİ	$\stackrel{L}{\text { c }}$	zet
	00＇s 20 ＇t ${ }^{\text {S }}$	00．0sz\＄	ど91	NO	（g TD）（ONOD）dVYdİ	LtS	cet
00－881＇I\＄		00＇ts	L6z	н7	（gษกว）วNOD＾OWHy	\pm tis	toi
	00．96t\＄	00＇ts	七てI	н7	（яษกว）JNOJ＾OWEy	tis	tor
$4{ }^{\text {¢ }}$ ！$!$ H	${ }^{\text {mot }}$	GJİd LIN0		LINO	NOILIITOSASA	700，	WALI
LNOOWV		GDIadiN	NHんNO	UNA	NOMLAGSa	аロ0ヵ	Wat

Appendix

Short-Range Improvement Layouts

NOTE: SOME ITEMS ARE CALLED OUT TWICE TO
SHOW THE LOW END AND THE HIGH END OF THE QUANTITY RANGE. PLEASE SEE ASSOCIATED EXCEL FURTHER DETAILS

NOTE: SOME ITEMS ARE CALLED OUT TWICE TO
QUANTITY RANGE. PLEASE SEE ASSOCIATED EXCE
SPREADSHEET (INCLUDED SEPARATELY) FOR
FURTHER DETAILS.

NOTE: SOME ITEMS ARE CALLED OUT TVICE TO SHOW THE LOWEND AND THE HIGH END OF THE QUANTITY RANGE. PLEASE SEE ASSOCIATED EXCEL FURTHER DETAILS

Wilbur Smith Associates

 IESTHEIMER CORRIDOR WESTHEIMER CORR
SHORT-RANGE IMPROVEMENT TYPES ESTIMATED QUANTITIES FOR TYPE C

Item	CODE	description	UNIT	quantity
104	503	REMOV CONC (RIPRAP)	SY	12.3
104	503	REMOV CONC (RIPRAP)	SY	123
104	509	REMOV CONC (SDWLK)	SY	14.2206
104	509	REMOV CONC (SDWLK)	SY	14.2206
104	511	REMOV CONC (DRVWY)	SY	21.33
104	511	REMOV CONC (DRVWY)	SY	31.11
104	513	REMOV CONC (CURB \& GUTTER)	LF	132.66
104	514	REMOV CONC (CURB)	LF	61.37
104	514	REMOV CONC (CURB)	LF	61.37
340	526	ASPH CONC (TY D)(LEVEL-UP)	Cr	0
340	526	ASPH CONC (TY D)(LEVEL-UP)	Cr	0
340	545	ASPH CONC (TY D)(SURF)	Cr	0
340	545	ASPH CONC (TY D)(SURF)	Cr	0
360	501	CONC PAV (CONT REINF)(10")	SY	53.28
432	524	RIPRAP (CONC)(CL B)(4IN)	Cr	2.84
432	524	RIPRAP (CONC)(CL B)(4 IN)	Cr	3.93
432	547	RIPRAP (CONC)(CL B)	Cr	6.8
432	547	RIPRAP (CONC)(CL B)	Cr	8.23
529	505	CONC CURB (DOWEL)(6")	LF	251.15
529	505	CONC CURB (DOWEL)(6")	LF	284.15
529	511	CONC CURB AND GUTTER (6")	LF	117.8
531	502	CONCRETE SIDEWALKS	SY	30.13
531	502	CONCRETE SIDEWALKS	SY	39.91
536	510	CONC DIRECT ISLAND (DOWEL)	SY	16.71
536	510	CONC DIRECT ISLAND (DOWEL)	SY	16.71
644	501	SMALL RDSD SGN ASSM (TY A)	EA	2
666	533	REFL PAV MRK TYI (Y) (ISLAND)	SF	150.39
666	534	REFL PAV MRK TY I(Y) (MED NOSE)	EA	1
666	564	REFL PAV MRK TY II (Y) (ISLAND)	SF	150.39
668	505	PREFAB PAV MRK TY A (W) (88) (SLD)	LF	74
668	505		LF	114
668	510	PREFAB PAV MRK TY A (W) (24) (SLD)	LF	25
668	510	PREFAB PAV MRK TY A (W) (24) (SLD)	LF	25
668	511	PREFAB PAV MRK TY A (W) (ARROW)	EA	1
668	515	PREFAB PAV MRK TY A (M ((WORD)	EA	1
672	539	RAIS PVA MRKR CLB (REFL) TY II-C-R(HV)	EA	7
672	539	RAIS PVA MRKR CLB (REFL) TY II-C-R(HV)	EA	11
678	503	PAV SURF PREP FOR MRKS (8")	LF	74
678	503	PAV SURF PREP FOR MRKS (8")	LF	114
678	506	PAV SURF PREP FOR MRKS (24")	LF	25
678	506	PAV SURF PREP FOR MRKS (24")	LF	25
678	507	PAV SURF PREP FOR MRKS (ARROW)	EA	1
678	508	PAV SURF PREP FOR MRKS (WORD)	EA	1

NOTE: SOME ITEMS ARE CALLED OUT TWICE TO SHOW THELOW END AND THE HIGH END OF THE QUANTTYRANGE PEASE SEEASSOCIATED EXCEL
FURTHER DETAILS

ITEM	Code	description	UNIT	quantity
104	503	REMOV CONC (RIPRAP)	SY	107.85
104	503	REMOV CONC (RIPRAP)	sY	107.85
104	509	REMOV CONC (SDWLK)	sr	95.51
104	509	REMOV CONC (SDWLK)	SY	95.51
104	511	REMOV CONC (DRVWY)	SY	0
104	511	REMOV CONC (DRVWY)	SY	0
104	513	REMOV CONC (CURB \& GUTTER)	LF	273.9
104	514	REMOV CONC (CURB)	LF	0
104	514	REMOV CONC (CURB)	LF	0
340	526	ASPH CONC (TY D)(LEVEL-UP)	CY	8.79
340	526	ASPH CONC (TY D)(LEVEL-UP)	Cr	8.79
340	545	ASPH CONC (TY D)(SURF)	Cr	8.79
340	545	ASPH CONC (TY D)(SURF)	Cr	8.79
360	557	CONC PAV (JOINT REINF)(13")	SY	210.99
432	524	RIPRAP (CONC)(CL B)(4 1 N)	Cr	12.52
432	524	RIPRAP (CONC)(CL B)(4 IN)	Cr	12.52
529	511	CONC CURB AND GUTTER (6")	LF	256.96
529	512	CONC CURB (TY A)(MOUNTABLE)	LF	0
529	512	CONC CURB (TY A)(MOUNTABLE)	LF	0
531	502	CONCRETE SIDEWALKS	SY	103.7023
531	502	CONCRETE SIDEWALKS	SY	103.7023
536	510	CONC DIRECT ISLAND (DOWEL)	SY	0
536	510	CONC DIRECT ISLAND (DOWEL)	SY	0
644	501	SMALL RDSD SGN ASSM (TY A)	EA	2
666	502	REFL PAV MRK TY (W) (4)' (BRK)	LF	50
666	524	REFL PAV MRK TY I (Y) (4)' (SLD)	LF	400
666	533	REFL PAV MRK TY I (Y) (ISLAND)	SF	0
666	564	REFL PAV MRK TY \# (Y) (ISLAND)	SF	0
668	505	PREFAB PAV MRK TY A (W) (8)' (SLD)	LF	80
668	505	PREFAB PAV MRK TY A (M) (8)' (SLD)	LF	120
668	507	PREFAB PAV MRK TY A ($\mathrm{M}_{\text {(}}\left(12^{\prime \prime}\right.$) (SLD)	LF	125
668	510	PREFAB PAV MRK TY A (W) (24") (SLD)	LF	36.5
668	510	PREFAB PAV MRK TY A ($\mathrm{M}^{\text {(24) }}$ (${ }^{\text {(SLD) }}$	LF	36.5
668	511	PREFAB PAV MRK TY A (M) (ARROW)	EA	1
668	515	PREFAB PAV MRK TY A ($)_{\text {(}}$ (WORD)	EA	1
672	539	RAIS PVA MRKR CL B (REFL) TY II-C-R(HV)	EA	12
672	539	RAIS PVA MRKR CLB (REFL) TY II-C-R(HV)	EA	8
677	501	ELIM EXT PAV MRK \& MRKR (4")	LF	33
677	504	ELIM Ext PAV MRK \& MRKR (12")	LF	104
677	506	ELIM EXT PAV MRK \& MRKR (24")	LF	24
678	503	PAV SURF PREP FOR MRKS (8) ${ }^{\circ}$	LF	0
678	503	PAV SURF PREP FOR MRKS (8)	LF	0
678	504	PAV SURF PREP FOR MRKS (12")	LF	100
678	506	PAV SURF PREP FOR MRKS (24")	LF	24
678	506	PAV SURF PREP FOR MRKS (24")	LF	24
678	507	PAV SURF PREP FOR MRKS (ARROW)	EA	0
678	508	PAV SURF PREP FOR MRKS (WORD)	EA	0
7157	501	SIGNAL POLE REPLACEMENT	EA	1
7157	502	SIGNAL HEAD ASSEM REPLACE	EA	0
7157	503	SPAN WIRE CABLE REPLACEMENT	EA	4
7157	506	SIGNAL CONTROLLER CABINET REPLACE	EA	

[^2]FURTHER DETAILS.

item	code	description	UNIT	quantity
104	503	REMOV CONC (RIPRAP)	SY	135.38
104	503	REMOV CONC (RIPRAP)	sY	135.38
104	514	REMOV CONC (CURB)	LF	212.66
104	514	REMOV CONC (CURB)	LF	212.66
340	526	ASPH CONC (TY D)(LEVEL-UP)	Cr	4.17
340	526	ASPH CONC (TY D)(LEVEL-UP)	CY	4.17
340	545	ASPH CONC (TY D)(SURF)	Cr	4.17
340	545	ASPH CONC (TY D)(SURF)	Cr	4.17
360	557	CONC PAV (JOINT REINF)(13")	SY	0
432	524	RIPRAP (CONC)(CL B)(4 ${ }^{\text {N }}$)	Cr	0
432	524	RIPRAP (CONC)(CL B B)(4)	Cr	0
432	547	RIPRAP (CONC)(CLE B)	Cr	1.52
432	547	RIPRAP (CONC)(CLE B)	Cr	1.52
529	505	CONC CURB (DOWEL)(6")	LF	214.37
529	505	CONC CURB (DOWEL)(6")	LF	214.37
529	511	CONC CURB AND GUTTER (6")	LF	0
529	512	CONC CURB (TY A)(MOUNTABLE)	LF	512
529	512	CONC CURB (TY A)(MOUNTABLE)	LF	524
644	501	SMALL RDSD SGN ASSM (TY A)	EA	7
658	505	DEL ASM TY A (D-DW)	EA	26
666	502	REFLPAV MRK TY (M ((4) (BRK)	LF	0
666	503	REFLPAV MRK TYI (M (4) (4) (DOT)	LF	32.45
666	514	REFL PAV MRK TY I (W) (DBL ARROW)	EA	1
666	524	REFL PAV MRK TY I(Y) (4)' (SLD)	LF	0
666	533	REFL PAV MRK TY I (Y) (ISLAND)	SF	0
666	537	REFL PAV MRK TY II (W) (4") (DOT)	LF	32.45
666	546	REFL PAV MRK TY \# (W ((DBL ARROW)	EA	1
666	564	REFL PAV MRK TY \# (Y) (ISLAND)	SF	0
668	505	PREFAB PAV MRK TY A (W) (8) (SLD)	LF	160
668	505	PREFAB PAV MRK TY A (W) (8) (SLD)	LF	160
668	507	PREFAB PAV MRK TY A (W) (12") (SLD)	LF	0
668	510	PREFAB PAV MRK TY A (W) (24") (SLD)	LF	21
668	510	PREFAB PAV MRK TY A (W) (24") (SLD)	LF	21
668	511	PREFAB PAV MRK TY A (W) (ARROW)	EA	12
668	515	PREFAB PAV MRK TY A (W) (WORD)	EA	4
672	508	RAIS PVA MRKR CL B (REFL) TY I-R	EA	8
672	539	RAIS PVA MRKR CLE (REFL) TY II-C-R(HV)	EA	8
672	539	RAIS PVA MRKR CLB (REFL) TY II-C-R(HV)	EA	8
677	501	ELIM EXT PAV MRK \& MRKR (4")	LF	0
677	503	ELIM EXT PAV MRK \& MRKR (8) ${ }^{\prime \prime}$	LF	160
677	504	ELIM EXT PAV MRK \& MRKR (12")	LF	0
677	506	ELIM EXT PAV MRK \& MRKR (24")	LF	6
678	503	PAV SURF PREP FOR MRKS (88)	LF	160
678	503	PAV SURF PREP FOR MRKS (8)	LF	160
678	504	PAV SURF PREP FOR MRKS (12")	LF	
678	506	PAV SURF PREP FOR MRKS (24")	LF	21
678	506	PAV SURF PREP FOR MRKS (24")	LF	21
678	507	PAV SURF PREP FOR MRKS (ARROW)	EA	13
678	508	PAV SURF PREP FOR MRKS (WORD)	EA	4
7157	502	SIGNAL HEAD ASSEM REPLACE	EA	6
7157	503	SPAN WIRE CABLE REPLACEMENT	EA	6
7157	506	SIGNAL CONTROLLER CABINET REPLACE	EA	1
NOTE: SOME ITEMS ARE CALLED OUT TWICE TO SHOW THE LOW END AND THE HIGH END OF THE QUANTITY RANGE. PLEASE SEE ASSOCIATED EXCEL SPREADSHEET (INCLUDED SEPARATELY) FOR FURTHER DETAILS.				

Alternative Sections

The roadway sections shown in this Appendix were developed to launch a discussion into altemative visions for the roadway element of the corridor. The sections serve several important functions in considering the future of the Westheimer comidor.

They demonstrate the variety of roadway types available that may serve transportation in the corridor. They show how the local aocess and through movement functions of Westheimer can be segregated but acoommodated within a single right-ofway. They show how wide streets with lots of traffic can be made more pedestrian friendly. They show how higher capacity transit could be incorporated into the comidor.

A broad range of altematives have been presented, from the existing condition to multiway boulevards with different transit modes

The implementation of any of these altemative roadway sections must be preceded by extensive public involvement. For some of these sections it could be appropriate to test them in pilot projects. Some could be built as part of an urban village development.

The way Westheimer looks and functions now is not the only option. The sections shown on the following pages are a starting point for discussions on the future of the corridor.

alternative sections

Existing Configuration (No-Build)

ADVANTAGEOUS FEATURES:

- Low cost
- No R-O-W acquisition

ISSUES TO BE ADDRESSED:

- Frequent curb cuts

Frequent bus stops
Edge of the roadway is undefined
Aerial utilities
Narrow sidewalks (when present)

Existing Configuration

 with Enhanced Streetscape (Long-Range Phase One)ADVANTAGEOUS FEATURES:

- Consolidated driveways
- Edge of the roadway is defined by trees

Aerial utilities are buried

- More ample sidewalk width

ISSUES TO BE ADDRESSED:

- Negotiations with property owners for driveway consolidation and R-O-W
- Frequent bus stops

Existing Configuration with Diamond Lane

ADVANTAGEOUS FEATURES

- Increased distance between bus stops

Right lane for right turns and buses only
Low cost
No R-O-W acquisition
ISSUES TO BE ADDRESSED:

- Frequent curb cuts

Edge of roadway is undefined
Aerial utilities
Narrow sidewalks (when present)

- Through-traffic limited to three lanes

Existing Configuration

 with Traffic BarrierADVANTAGEOUS FEATURES:

- Right turns and buses separated from through traffic

Right turns and buses separated from thrount
Low cost
No R-O-W required
ISSUES TO BE ADDRESSED:

- Safety considerations when changing between through-lanes - Safety conside
and local lanes
Aerial utilities
- Narrow sidewalks (when present)

ALTERNATIVE SECTIONS

Multiway Boulevard

 Alternative \#2Advantageous FEATURES
-Through traffic separated from local traffic and buses - Distance between signalized intersections increased to as much as 1 mile for through lanes
Edge of the roadway is defined by trees
Existing aerial utilities are buried
On-street parking is provided
Encourages building development closer to the street
inuous bike lane
Increased pedestrian amenities
No R-O-W acquisition, use private property
ISSUES TO BE ADDRESSED: Cost
Construction phasing
Circuitous route for those entering facility on local lanes Left and U-turns from local lanes require special handling Negotiations with property owners on access and use of private property

ALTERNATIVE SECTIONS

Multiway Boulevard

Alternative \#3

Multiway Boulevard

 Alternative \#4ADVANTAGEOUS FEATURES

- Through traffic separated from local traffic

Distance between signalized intersections increased to as uch as 1 mile for through lanes
Buses are replaced by much faster and more attractive transit mode (BRT or LRT)
Edge of the roadway is defined by trees
Existing aerial utilities are buried
On-street parking is provided
Encourages building development closer to street Improved pedestrian amenities

ISSUES TO BE ADDRESSED:
62' R-O-W required on each side
Cost of roadway plus rapid trans
Construction phasing
tering facility on local lanes
from local lanes require special handling
Negotiations with property owners on access and R-O-W

ALTERNATIVE SECTIONS

Multiway Boulevard

 Alternative \#5ADVANTAGEOUS FEATURES:
Through traffic separated from local traffic
Grade-separated major intersections

- Edge of the roadway is defined by trees
- Existing aerial utilities are buried
- On-street parking is provided
- Encourages building development closer to street - Improved pedestrian amenities

ISSUES TO BE ADDRESSED:
40' R-O-W required on each side
Cost
Construction phasing
Circuitous route for those entering facility on local lanes

- Left and U-turns from local lanes require special handling
- Moving between through and local lanes requires special handling
- Negotiations with property owners on access and R-O-W

Multiway Boulevard Alternative \#6

ADVANTAGEOUS FEATURES
Through traffic separated from local traffic
Grade-separated rapid transit
Edge of the roadway is defined by trees
Existing aerial utilities are buried
On-street parking is provided
Encourages building development closer to street Improved pedestrian amenities

ISSUES TO BE ADDRESSED:
72' R-O-W required on each side
Cost of roadway and transit
Construction phasing
Circuitous route for those entering facility on local lane
ft and U-turns from local lanes require special handling Left and U-turns from local lanes require special handling

> dling

- Negotiations with property owners on access and R-O-W

[^0]: Travel Time: Average travel time for vehicles in seconds per vehicle

 Average Delay: Average delay for vehicles in seconds per vehicle

 Stops: Average number of stops for vehicles

[^1]: Note: * New right turn bays may require right-of-way acquisition
 ** Signal Timing and Operation Improvements are required throughout the length of the project

[^2]: NOTE: SOME ITEMS ARE CALLED OUT TWICE TO
 QUANTITY RANGE PIEASESEEASSOCIATD EXCEL
 PRREADSHEET (INCLUDED SEPARATELY) FOR

