This chapter introduces the Planning Strategy and design guidelines for the Corridor.

Southeast Planning Strategy

The diagram on the facing page illustrates the combination of the Pedestrian Realm/Mobility Plan and the Development Concept Plan, which are described in detail in the sections that follow. The resulting plan is the Urban Design Plan for the Southeast Corridor. This plan illustrates broader elements of the Corridor that will eventually result in Transit Oriented Development and connections to the surrounding community.

The distinguishing characteristics of this Corridor are the extensive areas of the Corridor that abut existing residential neighborhoods. The line passes through a variety of conditions from the very urban areas abutting the downtown, though the University area, and past large portions of the Corridor that are open space, such as MacGregor Park.

The Plan illustrates detailed areas that were developed during the workshop for the Southeast Corridor. It indicates that stable neighborhoods, located in proximity to the Transit Street, should be protected from redevelopment in the future. This Corridor has components of the downtown as well as development opportunity areas. There are a variety of existing uses along the Corridor. The west end, near the downtown, is characterized by a tight grid pattern of streets with relatively compact blocks. The East End Corridor connects to this area. Full blocks can be developed here with some ease. At the middle of the Corridor is the University of Houston and Texas Southern University where the University Line will connect with the Southeast line. This area offers the opportunity to locate mixed use development that supports the Universities. At the east end of the line is the Palm Center which could be a large block mixed use development centered on the intermodal station at that location.

The important connector streets lead to stations on the line as illustrated. It is clear from the Plan that such streets as Polk and Wheeler function as pedestrian links to the Transit Street. The suggested policies of this report and the accompanying street cross sections demonstrate how the pedestrian environment can be enhanced.
C2.2

Pedestrian Realm/Mobility Plan

The Pedestrian Realm/Mobility Plan illustrates recommendations to improve and enhance the pedestrian realm and mobility conditions within the Southeast Corridor. The goal of these recommendations is to provide a safe, vibrant, attractive and highly functional pedestrian experience along the Southeast Corridor Transit Street adjacent to the proposed Transit Stations/Transit Centers and along key connecting streets.

Beautiful, tree lined, pedestrian focused streets are the framework of the Pedestrian Realm/Mobility Plan. Streets comprise a large percentage of public space and as such must be enhanced and treated as important public places. When streets function well, they are lively places where cafes, corner flower shops, public art and gardens create vibrant outdoor rooms. They are the place where the eyes of the community view activities of the street and serve as the frontage for developments.

Foremost, the Transit Street is recommended for substantial pedestrian realm enhancements: Capitol/Rusk, Paige/Delano, McKinney, York/Sampson, Scott, Wheeler, Martin Luther King Boulevard and Griggs.

Streets intersecting the proposed Southeast Transit Street will provide access to and from the surrounding facilities, businesses and communities to the Transit Stations. These pedestrian connections are also recommended for pedestrianrealm enhancements and include key segments of: Sampson, Roberts, McGowen, Cullen , Calhoun, Anita, Alabama, S. Lockwood, Cleburne, Blodgett and Scott.

Streetscape enhancements should include street tree plantings with the ambition to create a continuous pedestrian canopy. Street trees will clearly identify the important pedestrian streets and should provide shade to clear, wide, continuous sidewalks extending from back of curb to building fronts along the Transit Street and connecting streets. In addition, pedestrian level lighting and street furnishings are appropriate on these streets.

Lighting along the Southeast Corridor is recommended to be consolidated, as possible onto the catenary poles to be installed for the electrical service to the light rail cars. Both street lighting and pedestrian lighting can be attached to these catenary poles effectively. Consolidating lighting on these poles will avoid the visual clutter and expense of multiple poles.

Ample pedestrian crosswalks are crucial to the perception of accessibility to both sides of the Southeast Transit Street. Great care to provide safe, well-marked and unimpeded crossing opportunities especially within retail zones is critical. Bulb-outs reduce crossing distances and should be designed where on-street parking is proposed. Intersections along the Transit Corridor in need of crosswalk enhancements are identified above. Additional crosswalks are recommended for the intersections of: Hutchins and Capitol, Hutchins and Rusk, Palmer at McKinney, University Oaks Boulevard at Wheeler, South MacGregor at Martin Luther King Boulevard, Arvilia Lane at Martin Luther King Boulevard, and Cavanaugh at Griggs.

Current bike lanes serving the Southeast Corridor area should be connected to Transit Stations. These existing bike lanes are also recommended to be widened to AASHTO standards to improve their functionality and safety for bikers.

Two regional bikeway trails are recommended to be extended to the Southeast Corridor Transit Stations to improve regional accessibility to the line: Brays Bayou tributary at Palm Center Park and Buffalo Bayou Trail System.

Discovery Green and McGregor Park are ideally located on the Corridor to provide key focal points at existing public spaces. These regional parks can provide amenities for adjacent Transit Oriented Development.

Urban Squares are smaller scale publicly accessible open spaces that should be located in association with Transit Oriented Development. These small plazas are more urban in nature and do not include active/sports facilities. Urban Squares are generally accessible to public use, often privately owned and may be gated or well lit for night security. These squares are primarily paved with planting areas, shade trees, planters, public art, fountains and seating for passive, outdoor enjoyment.
C2.3
Land Development Concept Plan

The Land Development Concept Plan divides the Southeast Corridor into three categories based on their development potential:

Development Opportunity Area 1 - Corridor
The Development Opportunity Area 1 is concentrated at a few key points along the Southeast Corridor, including: the area within a ¼ mile of the proposed Leeland Station which consists of mainly older underdevelopment industrial and employment lands; along the western frontage of Scott Street between the proposed Elgin and Cleburne Stations which is characterized by small plaza-type retail commercial uses, between the proposed East University and MacGregor Park Stations which include a major vacant parcel and plaza-type retail at the Martin Luther King Jr. Boulevard - Old Spanish Trail interchange; and, around the Palm Center on Griggs Road which is characterized by the Palm Center’s service commercial uses and adjacent commercial and light industrial uses along Griggs Road.

Development Opportunity Area 2 - Downtown
The downtown is likely to experience large-scale redevelopment activity as a result of the planned transit facilities and proximity to the city center. It includes existing employment, office and commercial uses – uses that are typically subject to more frequent redevelopment. The downtown also includes vacant and underdeveloped lands within the 1/4 mile station radius where Transit Oriented Development is most probable.

Stable Areas
Stable Areas are comprised of the predominately residential neighborhoods, parks and the major university campuses within the Southeast Corridor Study Area. Stable Areas are those areas that are not likely to experience large-scale redevelopment activity as a result of the planned Urban Corridor. Areas designated as Stable include existing stable residential neighborhoods, existing parks and open space as well as significant institutional uses both within and outside of the 1/4 mile stations radius.

C2.3.1 Demonstration Plans

Four Demonstration Plans for prototypical sites were prepared to demonstrate conceptually how Transit Oriented Development could manifest itself given the context and condition of the Southeast Corridor.

The following diagrams provide a collection of images including a site plan, photographs of development precedents and photo simulations of large lot redevelopment, a large lot with minimum frontage on the Transit Street and a large through lot.
Large Through Lot
Griggs Road and Martin Luther King Blvd
This site is an example of large through-lot development.

Site Characteristic
- the site comprises approximately 1,412,868 sf of area (32.42 acres);
- an extensive length of frontage of 1,796 linear feet on Griggs Rd and 1,375 linear feet on MLK Blvd;
- the north edge of the site is formed by a ravine extending from Martin Luther King Blvd to Beekman St;
- the area surrounding the site is low density residential with an underutilized plaza that is being used for public services; and,
- the site includes an internal transit terminal.

The Program
- the program for the site includes a mix of transit supportive multi-family residential over retail, rear structured parking, townhouses along the north side of the site and open space to connect community activity. A new YMCA will be built on the SW corner of the intersection; existing Palm Center-Business and Technology Center functions will be incorporated into the development along with the intermodal transit station.

The Design Solution
- a mix of townhouses along the ravine and Martin Luther King Blvd;
- a range of 1-8 story buildings along Griggs Road and Martin Luther King Blvd;
- development of small public spaces along the main the streets to act as a focus for the community; and,
- new YMCA, intermodal station and Palm Center-Business and Technology Center uses.

The Results
- 2,162 linear feet of frontage on the Transit Street;
- 211,849 sf of retail;
- 475 Townhouses;
- 1,004 apartments; and,
- parking structures at 548,347 sf.
Precedent - Mixed use street related building

Precedent - At grade retail with apartment above

Precedent - Five-story street related apartments

Southeast Corridor

Demonstration Plan

3D model of demonstration plan
2 1/2 Lot Single Frontage

Scott Street, from Alabama Street to Cleburne Avenue

Located near the University of Houston-Stadium, the site is an example of 1/2 lot single frontage development.

- the site comprises approximately 566,187 sf of area (13 acres);
- the site has 1,765 linear feet on Scott St; and,
- the area surrounding the site is a mix of low density residential, surface parking lots and the University of Houston campus. Along Scott St there is a commercial plaza and the Robertson Stadium.

The Program

- the program for the site includes mixed use residential over retail and parking over retail.

The Design Solution

- provide for a range of 2-6 story buildings;
- a mixed use TOD development on Scott St;
- contain a mix of transit supportive uses such as multi-family residential, and commercial; and,
- create a pedestrian friendly environment next to the existing stadium as a focus to the university and the neighborhood by developing both sides of Scott St; around the station.

The Results

- 1,765 linear feet of frontage on the Transit Street;
- 175,913 sf of retail;
- 623 apartments; and,
- parking structures at 232,375.
Precedent - Four-story apartments with at grade retail
Precedent - Parking structure with enhanced streetscape
Precedent - Urban streetscape
Photomontage illustrating the potential enhanced streetscape and built form on Scott Street adjacent to the Transit Center at the University of Houston
3D model of demonstration plan
Precedent - Four-story apartments with at grade retail

Southeast Corridor

Houston Urban Corridor Planning
The Planning Strategy

20

37
Small Infill and 1/2 Lot Single Frontage

Scott Street

The site is located on Scott Street, from Hadley Avenue to Rosalie Street. This site is an example of small infill lots and 1/2 lot single frontage developments.

Site Characteristic
- The site comprises approximately 448,800 sf of area (11 acres);
- The site has 1,586 linear feet of frontage on Scott Street; and,
- The area around the site is predominantly low rise single family and vacant land with some retail.

The Program
- The program for the site includes residential and mixed use apartments over retail. The objective is to generate development on small lots that are vacant or underutilized.

The Design Solution
- A site plan providing a mix of housing types along Scott Street, including a broad range of densities from townhouses, live/work units and apartment buildings over retail up to 6 stories in height.

The Results
- 1,586 linear feet of frontage on the Transit Street;
- 45,373 sf of retail;
- 152 live/work units;
- 84 townhouses; and,
- 203 apartments.

Existing site conditions

Location of site in Corridor

Demonstration Plan created during the workshop
Precedent - Landscaped sidewalk
Precedent - Four-story building with extended boulevard
Precedent - Live/work units with pedestrian link to adjacent housing

3D model of demonstration plan

Photomontage illustrating the potential enhanced streetscape and built form on Scott Street
Large Through Lot

Martin Luther King and Old Spanish Trial

This site is an example of large through sites development.

Site Characteristic

- The site comprises approximately 360,806 sf of area (8.28 acres);
- The site has 1,446 linear feet on Martin Luther King and 889 linear feet on Old Spanish Trail; and,
- The site surrounding the demonstration plan is primary residential, vacant land, a retail plaza and a gas station service with MacGregor Park in proximity.

The Program

- The program for the site is multi-family residential with structured parking;
- Fit new development along Martin Luther King and Old Spanish Trail so that they can improve street conditions; and,
- Intensify development along the intersection and around the station.

The Design Solution

- Provide for a range of 6-8 story buildings;
- Accommodate parking to the rear of the site so that it is accessible from inner roads; and,
- Generate a strong pedestrian environment at the street level to support transit riders and the surrounding area.

The Results

- 1,446 linear feet of frontage on the Transit Street;
- 1,163 apartments; and,
- 770 parking spaces.
Precedent - Six-story mixed use apartment building with retail
Precedent - Six-story mixed use apartment building with pedestrian area at street-level
Martin Luther King Jr. Blvd.
Southeast Corridor
Houston Urban Corridor Planning
The Planning Strategy

3D model of demonstration plan

Precedent - Six-story mixed use apartment building with retail
Precedent - Six-story mixed use apartment building with retail
Precedent - Retail building with pedestrian area at street-level
C2.3.2 Development Analysis

The following analysis is intended to test underlying development economics in the Southeast Corridor market context. The development proforma is generic in nature and is not intended to represent specific site feasibilities. The form and scale of development, (an infill townhouse site) is indicative of the type of smaller scale, Transit Oriented Development one could expect to occur over time in this area. Office buildings, for example, are unlikely to drive denser development in this Corridor given the absence of an existing nearby office node.

Development Scenario 1 Infill Townhouse Project

Description of Development
A generic development proforma was prepared for a 45-unit, three-story townhouse project. The land parcel measures 2 acres, and the units average 1,600 sf. There is one parking stall per unit, although additional surface parking may be available on a driveway, on-street parking or in a shared communal lot. The total development time horizon is 16 months from land acquisition to full occupancy. The proforma details are summarized on the following page.

Comparable Properties and Market Parameters
Two existing townhouse development projects were identified in proximity to the proposed Leeland and N. Huchins transit stops within the Southeast Corridor; the first being Park Townhomes, situated on Park Street, and the other known as Waterhill Homes on Rusk, situated on Rusk Street.

In terms of pricing, the Leeland Park townhouse unit was 1,538 sf, and had an asking price of $217,900. The Waterhill Homes on Rusk townhouse unit was 1,825 sf and had an asking price of $229,900. The prices for the two comparable projects are $142 psf and $126 psf, respectively. These projects are similarly sized to the 1,600 sf units proposed in the development proforma illustrated below.

New projects in the area, however, face considerable pricing pressure from the existing housing stock. As outlined in the Corridor overview above, based upon ML3 data from the Houston Association of Realtors, the average resale townhouse/condominium price for 2007 was in the range of $221,000. In contrast, single family homes were in the range of $127,500 (generally older supply compared to the newer townhouse/condominium units that were transacted).

Proforma Results
Understandably, the economic price required to justify new construction of townhouses in this area is within the range of current pricing at comparable projects, with land acquisition costs and construction costs projected near the middle point of market range. This produces a similar quality and character of building finish. The development proforma presented below suggests a required sale price of around $204,000, or $128 psf, compared to current asking prices for similar projects in the area in the $126 to $142 psf range. Consequently, there appears to be a potential to upgrade the building materials and finishes (and corresponding price for the project) closer to the $216,000 per unit range, or $135 psf, depending upon the depth of market demand, and be comfortably within the spectrum of current market pricing.

Some observations regarding the proforma for this type of project include the following:

- Hard construction costs (excluding parking) represent 52% of total project costs. The cost of parking accounts for an additional 5% of total end unit price. This represents a relatively small component since it is assumed the parking is at grade or structured underneath the units. Although underground parking can permit higher densities, it results in considerably more cost.

- Total land costs represent roughly 18% of total end unit price – this represents land values of roughly $720,000 per acre (or $20 per sf buildable) plus some carrying costs. A more dense development, provided it can be successfully marketed, will generally achieve lower land costs per sf, helping to reduce end unit prices (although for a different type of project – particularly smaller unit sizes).

- Of course, a developer needs to profit from any development at a rate consistent with the risk. Taking into account total project costs of approximately $8.2 million and assuming a 12% profit margin on the total project (higher when leveraged equity is considered), the required sale price per unit is $204,200 – translating to $128 per sf.
Of note, the generic proforma outlined above can achieve relatively high densities (approximately 22 units per acre) and still provide at least one parking space per unit. There may be an opportunity to design additional surface parking, either in front of each unit, on a street or in communal parking lot. A key consideration regarding the market feasibility for this type of development project is the potential demand generated by proximity to the Corridor. There are clearly a number of cost-competitive housing options in this area. In order to entice existing or new residents to a new development in the Southeast Corridor, the availability of enhanced public transit and associated mixed use development as an amenity will have to be emphasized. The ability to reduce car ownership may

Assumptions

<table>
<thead>
<tr>
<th>Timing Assumptions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Acquisition</td>
<td>01-Jan-08</td>
</tr>
<tr>
<td>Planning Period</td>
<td>4 months</td>
</tr>
<tr>
<td>Construction Commencement</td>
<td>03-May-08</td>
</tr>
<tr>
<td>Construction Period</td>
<td>12 months</td>
</tr>
<tr>
<td>Occupancy</td>
<td>01-May-09</td>
</tr>
<tr>
<td>Total Development Period</td>
<td>16 months</td>
</tr>
</tbody>
</table>

| Interest Rate | 7.00% |

<table>
<thead>
<tr>
<th>Building Areas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units</td>
<td>45</td>
</tr>
<tr>
<td>Average Unit Size</td>
<td>1,800 sq.ft.</td>
</tr>
<tr>
<td>Number of Stories</td>
<td>3</td>
</tr>
<tr>
<td>Ground Floor Coverage</td>
<td>24,000 sq.ft.</td>
</tr>
<tr>
<td>Gross Building Area</td>
<td>72,000 sq.ft.</td>
</tr>
<tr>
<td>Site Coverage</td>
<td>0.83 times</td>
</tr>
<tr>
<td>Land Area</td>
<td>2.00 acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residential Units</th>
<th>G.B.A.</th>
<th>Avg. Size</th>
<th>G.F.A.</th>
<th>G.L.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach & 1 Bedroom</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 & 2+ Bedroom</td>
<td>100%</td>
<td>1,800</td>
<td>72,000</td>
<td>72,000</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>1,800</td>
<td>72,000</td>
<td>72,000 sq.ft.</td>
</tr>
</tbody>
</table>

| Parking Ratio | 1.0 stalls per residential unit | 45 stalls |

Project Costs

<table>
<thead>
<tr>
<th></th>
<th>$000's</th>
<th>Per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase Price</td>
<td>$1,440</td>
<td>$32,000</td>
</tr>
<tr>
<td>Additional Land Costs</td>
<td>$72</td>
<td>$1,600</td>
</tr>
<tr>
<td>Land Carrying Costs</td>
<td>$141</td>
<td>$3,136</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$1,653</td>
<td>$36,736</td>
</tr>
<tr>
<td>Construction & Fringe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Construction Costs</td>
<td>$4,773</td>
<td>$106,058</td>
</tr>
<tr>
<td>Parking</td>
<td>$437</td>
<td>$9,719</td>
</tr>
<tr>
<td>Architect & Engineer</td>
<td>$339</td>
<td>$7,318</td>
</tr>
<tr>
<td>Site Improvements</td>
<td>$261</td>
<td>$5,621</td>
</tr>
<tr>
<td>Const. Contingency</td>
<td>$260</td>
<td>$5,600</td>
</tr>
<tr>
<td>Municipal Fees</td>
<td>$13</td>
<td>$280</td>
</tr>
<tr>
<td>Development Interest</td>
<td>$30</td>
<td>$661</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$6,113</td>
<td>$135,851</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales Commissions</td>
<td>$324</td>
<td>$7,200</td>
</tr>
<tr>
<td>Marketing & Advertising</td>
<td>$113</td>
<td>$2,500</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$437</td>
<td>$9,700</td>
</tr>
</tbody>
</table>

TOTAL PROJECT COSTS $8,203 $182,287

Required Price/Rent Calculations

- Required Return on Investment: 12%
- Required Average Sale Price: $204,162 Unit
also assist with affordability if efficient public transit can be utilized.

Conclusions Regarding Development Analysis

The above proforma analysis demonstrates the required sales price for a new infill townhouse development. When assessing this development proforma, it is important to note it reflects new building costs which generally exceed market affordability for many area residents. In the Southeast Corridor, for example, the income levels (and corresponding homeownership affordability levels) and stock of single-detached housing available for resale places a considerable constraint on market demand.

Notably, the average price of existing homes in the Corridor is well below pricing required for most forms of new housing development. Through 2007, the average single detached house price in the Southeast Corridor area was $127,500 drawn from data from the Houston Association of Realtors. Based upon proforma results and market analysis of comparable properties, new townhouses require a sales price in the range of $200,000 and upwards (depending upon unit sizes), which far exceeds the cost of a larger, single-detached house on a relatively sizeable lot.

With a median household income of roughly $27,500 across the Southeast Corridor, the affordable house price, at the median, is roughly $107,000, and the affordable monthly housing rent is $735 — far below the scale of prices or rents required to justify new construction. The affordability model incorporates a 6% interest rate, 30 year amortization, 20% down payment, and a calculation of monthly principal, interest and taxes, with the assumption that 32% of gross monthly income can be dedicated to housing costs.

Of course, some new construction has and will continue to take place in this Corridor, catering to a subset of the existing and potential new residents that can afford and are seeking the lifestyle associated with Transit Oriented Development, but this appears to be only a smaller niche market at present.

The general inequities between economic feasibility and market pricing for higher density forms of housing suggest the following:

- Transit Oriented Development along the Southeast Corridor is likely to be incremental. Substantial and broad market demand for Transit Oriented Development will not appear overnight, even with new rapid transit along this Corridor.
- New rapid transit along the Corridor will likely increase demand, but higher density forms of housing (and subsequently commercial space demand) is likely to remain a niche (hopefully a growing niche) market that appeals to users that have accepted (and can afford) a more urban housing lifestyle.
- In order to facilitate faster development of the medium and higher density development along this Corridor, considerable “assistance” might have to be considered — perhaps in the form of financial subsidies for development or ongoing occupancy costs and reduced parking costs.
- Lastly, although it is not explicitly examined in the proforma here, the availability of quality public schooling is clearly an important criterion within the city for attracting families to higher density forms of housing.

The analysis presented herein describes a generic development proforma. This model neither specifically reflects an existing land parcel, nor the timing of an anticipated project. Additionally, it does not attempt to portray the transit-supportive design standards discussed in earlier sections of this report. Rather, it is intended to illustrate the feasibility of new construction given existing market conditions.

Cost of factors such as wider sidewalk allowances, an increased urban/civic space requirement, building design standards and other considerations are generally more than offset by the saving achieved through the required provision of fewer parking spaces. In conclusion, Transit Oriented Development policies themselves are not a financial obstacle to new construction.
C2.4

Infrastructure Overview

Based on the research of the existing Southeast Corridor Infrastructure it appears that water mains for over half of the length of the Corridor are at the end of their life spans. Sanitary sewer lines for at least a third of the alignment are also past their predicted life spans.

The Southeast Corridor is residential in nature for a large part of its length and redevelopment will most probably continue to be residential. The size of the lines appears to be sufficient to accommodate additional density.

As in the North and East Corridors, redevelopment will occur in specific locations in the short term but most redevelopment will occur incrementally over a long period of time. This provides the opportunity to replace and upgrade the infrastructure as the areas change. However, where existing infrastructure has exceeded its predicted life span, consideration should be given to replacing it as transit is constructed. In other areas, the City will assess the capacity and condition of the infrastructure as development occurs.

It is hoped that a standard for lighting the streets and the pedestrian realm will be implemented throughout all of the Corridors as the lines are being built.
C2.5

Design Guidelines for TOD

Introduction

The successful realization of the Urban Corridor Plan requires that the guidelines for new development outlined in this chapter form the basis of the City’s new planning regime for Transit Oriented Development. The guidelines clarify the City’s expectations and provide the framework for the coordinated and consistent review and evaluation of applications for Transit Oriented Development within the Southeast Corridor.

The guidelines correspond with the Development Opportunity Areas as delineated by the Land Development Concept Plan and provide a series of mandatory requirements and optional guidelines for the design of pedestrian realm; buildings; parking, access and service facilities; and, engineering/infrastructure standards.

The following describes the overarching principles and objectives that form the basis of the guidelines in each of the Development Opportunity Areas:

- **Streetscapes/Pedestrian Realm**

 The guidelines for streetscapes are complex and include provisions for the pedestrian realm, which may include public and private lands, and is comprised of sidewalks, publicly accessible and visible open spaces, as well as the paved component of the street (the area between the curbs), including the portion that accommodates the transit facility, and other streets that are important to feed the transit system. In addition, public parks in proximity to the transit facilities require additional attention as key components of the pedestrian realm.

- **Buildings**

 The guidelines for buildings include all forms of development on lands considered to comprise the “private realm”. The guidelines include provisions for the transition between development within the identified Development Opportunity Areas and the Stable Areas.

- **Parking, Access and Service Facilities**

 Parking, access and service facilities have been identified as a vital issue in establishing an urban environment and visually pleasing streetscapes in conjunction with Transit Oriented Development. In addition, parking is a crucial element in influencing the cost of Transit Oriented Development. Urban development typically requires less parking than suburban forms of development, and also provides opportunities for shared parking. Higher density built form demands parking in structure.

- **Engineering**

 One of the primary objectives of the Urban Corridor Plan is to develop a comprehensive approach to development. An important component of that process is to standardize the implementation of engineering design standards.
C2.5.1 Development Opportunity Area 1 - Corridor

Guidelines within the Development Opportunity Area 1 - Corridor include a combination of mandatory development requirements, optional design guides and optional performance standards that, if achieved, make a particular development eligible for a series of additional performance benefits.

Mandatory
Mandatory Development Requirements within the defined Development Opportunity Area 1.

Statement of Application: Applies on sites that abut the Transit Street and are within 1/4 mile of a transit station

Pedestrian Realm

1. All buildings, with the exception of street facing townhouse units, shall be developed with a substantial portion of their front and exterior side façades between 15 and 25’ of the back-of-curb. It is understood that where a parcel has three sides abutting a public street, the build-within concept may not be achieved on the third side.

2. Street facing townhouses with no street facing garage shall ensure that the main front wall of the unit be built within 15 and 30’ of the back-of-curb.

3. Where front garages are proposed, the main front wall of the building shall be built within 20 and 40’ of the back of the curb.

4. The exterior side build-within zone for street townhouses shall be between 15 and 30’ of the back edge of the curb.

5. In locations where the public street right-of-way is equal to, or greater than the required 15’, the build-within zone shall be established from the edge of the street right-of-way and shall be between 0 and 10’.

6. On corner parcels, the exterior side yard shall also include a build-within zone located between 15 and 25’ from the back edge of the curb, and the main exterior side wall shall occupy a minimum of 60% of the depth of the parcel, within the build-within zone. On shallow lots, the City may consider, on a site-by-site basis, an allowance for a rear driveway.

7. In all Transit Street Configurations, 15’ from the back-of-curb is required for the pedestrian realm.

8. Where the rear yard or interior side yard of a Transit Oriented Development site abuts a single detached house, an angular plane shall be implemented to control the height of the building. The angular plane shall be established as follows:

 - a TOD site will be evaluated according to an analysis of adjacency and proximity to a threshold level of existing single-family detached homes, Transit Street frontage, deed restrictions, and other non-discretionary factors. If the site falls within certain criteria, an angular plane determined from a line corresponding to a certain number of feet above grade from the parcel line(s) abutting the single family properties and extending at a certain angle into the subject property from this above-grade line shall establish the maximum height of buildings on the subject site.

Southeast Corridor

Mandatory

Potential Mixed Use Development

- Building Height Boundary
- Site Line
- Potential Mixed Use Development
- 15’ min to Building Face
- 15’ Ped Zone
- Potential Building Height
- Pedestrian Pedway
- Public Pedway
- Sidewalk Seating
- Street Lights with Pedestrian Lighting
- Patio
- Colonnade
- Off Peak Parking (if applicable)
- Awning
- Tree Wells and Planting

Typical pedestrian realm Section
Mandatory

DOA 1 - Corridor

9. All residential buildings with direct access to dwelling units from the street shall be elevated a minimum of 2'-6" to provide privacy and a sense of entry to the unit. The maximum elevation from grade to the entrance landing shall be 5'.

10. On all lands fronting onto a public street, a Major Thoroughfare and/or a Major Collector, the minimum built frontage requirement shall be 75% of the parcel frontage and shall be occupied by the main front wall of a building within the build-within zone.

11. Notwithstanding the requirements for a minimum built frontage, where a publicly accessible and usable open space is provided abutting a front and/or exterior side parcel line, the frontage occupied by the publicly accessible and usable open space shall be counted toward the minimum built frontage requirement.

12. A minimum of 75% of the main front wall shall be at grade and, on a corner parcel, an exterior side wall at grade of any non-residential building shall consist of windows and entranceways that facilitate visibility into the building.

13. The City shall not accept cash-in-lieu of required street trees, unless a substantiated technical reason is provided that precludes street tree planting. Where cash-in-lieu of street trees is accepted, the monies received shall be utilized in coordination with the Parks and Recreation Master Plan to enhance tree cover in a local public park, or along the Transit Street within 1/4 of a mile of the development site from which the cash-in-lieu of street trees was accepted.
Non-Mandatory
Non-Mandatory Development Requirements within the defined Development Opportunity Area 1.

Performance Standards
Statement of Application: Optional Performance Standards apply on sites within 1/4 mile of a transit station. Developments that achieve all of Performance Standards will be eligible to utilize Performance Benefits as defined.

Development Blocks
14. For all large scale Transit Oriented Development projects (defined as projects on development blocks or parcels that are greater than 5 acres in size), the maximum development block or parcel size shall be approximately 5 acres in area. In all cases, there shall be no minimum development block or parcel area.
15. No development block or parcel frontage on a street shall exceed 400’. In all cases, the minimum development block or parcel frontage shall be 25’.
16. Large scale Transit Oriented Development projects shall provide public streets, or publicly accessible private streets, to subdivide any development block or parcel greater than 5 acres in size into smaller development blocks or parcels in accordance with this policy.

Buildings
17. The minimum density for any Transit Oriented Development project shall be a Floor Area Ratio of 1.00.
18. There shall be no specified maximum density.
19. The minimum height for any Transit Oriented Development building shall be two stories, or 18’, whichever is greater. Buildings on corner sites shall be a minimum of three stories, or 27’, whichever is greater.
20. There shall be no specific height limit.
21. Where any Transit Oriented Development building abuts a street, the building height shall be established as follows:
 - the main front wall and/or exterior side wall shall be permitted up to three stories (or 27’, whichever is greater) within the corresponding build-within zone; and,
 - for any main front wall and/or exterior side wall above three stories (or 27’, whichever is greater), the building shall be stepped back from the main front wall and/or the exterior side wall of the base building by a minimum of 5’.
22. Buildings of up to three stories may be built with zero setbacks to interior side parcel lines. Exterior side yards shall conform to the described build-within zones.
23. Buildings above three stories may include a zero interior side yard setback for the base building of three stories, but building side walls must be set back a minimum of 10’ from the interior side yards for that component of the building above three stories.
24. The City will encourage a transitional rear alley or easement process, coupled with access management from pedestrian and transit streets, on a block-by-block basis, where possible and appropriate.
DOA 1 - Performance Benefits

Non-Mandatory

Encroachments

25. Permanent encroachments shall be considered for permitting on a site-by-site basis, subject to design performance standards (to be developed) that consider such features as shade / weather protection, pedestrian clear zone width, space for street tree canopy, right-of-way proportions, utility clearances, etc.

26. The amount of any permitted encroachment shall be established by the City on a site-by-site basis, and in consideration of the following criteria: the encroachment enhances pedestrian comfort by providing shade and/or protection from the rain; and, the encroachment does not impede pedestrian movement, and maintains an unobstructed sidewalk area of a minimum width of 5'.

Parking

27. General public parking (surface lots and/or structured parking facilities) to serve 100 areas will be provided to augment the supply of parking.

28. On-street parking shall be promoted within all of the Urban Corridors.

29. The City shall pursue opportunities for the establishment of on-street parking in partnership with adjacent landowners where the spaces are provided on a combination of public land and private property, with public access to the parking spaces secured through agreements with the City.

30. Surface parking, loading areas, drive-through lanes and servicing facilities shall not be permitted in front of Transit Oriented Development buildings. Surface parking, drive-through lanes and/or servicing facilities may be permitted in an interior side yard, and are permitted within the rear yard.

31. Surface parking, loading areas, drive-through lanes and servicing facilities, where permitted, shall be appropriately screened from view from the street. Surface parking lots shall respect the build-within zones. Where surface parking must be provided, the visual impact of large surface lots shall be mitigated by a combination of setbacks, and significant landscaping including: pavement treatments, low walls or decorative fencing, landscape, trees and lighting throughout parking lots and along the edges.

32. Parking is encouraged to be provided in structures, either above, or where possible, below grade. Where a parking structure is above grade, it shall include a façade with active uses at grade and appropriate architectural articulation. Entrances to below grade or structured parking and service areas should occur within the building.

33. Access to parking and servicing areas should occur off side streets or service lanes and to the side or rear of buildings, where possible.

34. It is an objective of the City to limit access driveways to individual sites adjacent to the Transit Street. The City shall encourage shared access driveways and, preferably, shared rear lane access for all Transit Oriented Development. Where new development is proposed, the City shall require a minimum of 100' between access driveways onto the Transit Streets.

Performance Benefits

Statement of Application: Performance Benefits are available to developments within ¼ mile of a transit station that achieve all of the Performance Standards and generate no undue adverse impacts on the stability of adjacent Stable Areas.

Parking

35. For all retail and service commercial uses, including restaurants - a minimum of 2.0 and a maximum of 4.0 spaces/1,000 square ft of Gross Leasable Floor

Restaurant seating - Temporary encroachment, Bethesda, MD

Colonnade, South Lake, TX

Public parking garage in a private condominium, Toronto, Canada
Design Guidelines

Statement of Application: Non-mandatory development guidelines.

Pedestrian Realm

43. Buildings shall be connected to the street - by proximity, by the location of windows and entranceways, and the level of architectural detail.

44. Buildings shall be sited and organized to create a street space scaled to the pedestrian, and organized to present an appropriate façade to all adjacent streets to provide interest and comfort at ground level for pedestrians.

45. Main building entrances shall, wherever possible, be oriented toward adjacent streets to provide convenient access to pedestrians and public transit; buildings, and their main public entrances, shall be located close to the front and exterior side property lines, on-street parking, and the public sidewalk.

46. Buildings are to be generally sited parallel to the public street and along the edges of parks and open spaces. The public faces of these buildings are to align with neighboring buildings in a manner that defines these spaces with a consistent building face lining the street.

47. Non-residential buildings shall, to the greatest extent possible, front onto adjacent streets, be flush with grade and provide an active use at grade in order to promote pedestrian activity.

48. Buildings shall provide active façades that include windows and entry features and, where appropriate, outdoor cafés and restaurants, community services, retail stores and display windows.

49. Street tree planting should form a continuous canopy along the street. Tree species should be selected by the applicable TR2/2MD to reinforce the role of the various street hierarchies within the area.
2. Provide a balance of passive and active park space and provide for the maximum program flexibility in the design of the parks.

3. Incorporate a greening strategy that includes tree planting and seasonal horticultural displays.

4. Incorporate sustainability practices both in terms of capital projects and operations.

5. Provide wayfinding and program information displays as well as heritage interpretation and public art.

Gateways

6. Gateways shall be either architectural, stand-alone features, or landscape treatments that define the main entrances to the Urban Corridors.

7. Features shall be lit to enhance their legibility at night.

8. The scale of the gateway shall be large enough to be visible from a car at a distance of at least 300 ft.

9. Gateways shall enhance and not compete with surrounding existing architectural and natural features.

Buildings

10. Corner building designs shall articulate, define and enhance the intersection at which it is located by enhancing the building’s presence at each corner.

11. Buildings should ‘turn’ the corner, i.e. they should have primary, articulated façades towards both streets and should be visually different from adjacent development.

12. Large areas and continuous rows of monotonous and repetitive façades shall be avoided. A more textured architectural quality can be achieved by introducing variation in certain elements of the
façade treatment.

69. Variation in three-dimensional elements, such as balconies, bay windows and porches, cornices, window trim, entrances and the articulation of the building mass, shall be used to create a dynamic façade.

70. Variation and articulation in the building mass including horizontal and vertical setbacks, such as step backs at the upper stories, shall be established.

71. A pedestrian weather protection system including awnings, canopies, colonnades, or front porches along the sidewalk edges and adjacent to the urban squares/plazas and at entrances to buildings shall be considered. The City will promote Temporary or Permanent Encroachment Permits for both signage and awnings.

Signage and Lighting

72. Signage will address the amount and type of illumination, size, materials, typography and design.

73. Signage should be an integral part of the architecture of a building.

74. Signs should be designed to complement the building and enhance the visual appeal of the street.

75. Signs should be designed in consideration of nearby residential uses, in terms of size, materials, and location.

76. The ratio of sign band to building mass should be restricted such that the signage does not dominate the façade.

77. Mobile box signage is not allowed.

78. Neon lights are allowed when they do not dominate the signage and have no negative impacts on nearby residences.

79. Exterior lighting shall be designed to promote pedestrian comfort, safety and provide a high quality ambiance. In addition, accent lighting is required to emphasize built form and landscape elements. Pedestrian scale lighting shall be provided adjacent to streets, walkways, pedestrian routes, and in parks and courtyards.

80. Internally lit canopies are strongly discouraged.

81. Commercial façades should be appropriately lit.

82. Pedestrian realm signage and lighting should be coordinated. Pole mounted pedestrian light fixtures with a light source at 12 to 15' high and a spacing of 30 to 50' is recommended.

Mid-Block Pedestrian Connections

83. Mid-block pedestrian connections shall be provided within larger development parcels. These are intended to be designed as pedestrian landscaped lanes and should be lit, landscaped and maintained for public.

84. Mid-block pedestrian connections shall provide a fine grain of pedestrian circulation and an important connection between two streets.

85. Mid-block pedestrian connections shall lead to public destinations such as schools, parks and public transit stations.

86. Mid-block pedestrian connections shall provide an address to individual residential or business frontages along their lengths.
Non-Mandatory DOA 1 - Design Guidelines

C2.5.1.a Pedestrian Character Transit Street

To better understand the urban design impact of the new transit on the existing streetscapes, sections have been developed through various locations along the Southeast Corridor illustrating the existing condition of the street from the face of buildings on each side. A section showing the new streetscape has been constructed as a comparison.

The sections have been selected to indicate typical conditions on the "Transit Street" to show the impact of the LRT. Additionally, sections have been developed to illustrate the existing and proposed improved conditions of important connecting streets.

The portion of the Transit Street used to illustrate typical conditions is Scott Street at Anita Street. The existing street condition is illustrated in the photo of the street. It is an 80' right of way that accommodates six lanes of traffic. The buildings at either side are low scaled and set well back from the curb of the street. For the most part, the sidewalks are not continuous. The proposed section illustrates the impact of the LRT down the center of the street in its own right-of-way. The full street right-of-way is expanded to 100' to accommodate transit. The pedestrian realm will be continuous and buildings will be sited close to the street to create a pedestrian scaled street.

The second Transit Street condition is taken on Martin Luther King Boulevard (MLK) at Courteleyou Street. The existing street is 113' in width and provides space for 3 lanes of traffic in each direction with a central planted median. The existing sidewalks are narrow. The proposed street has been expanded to 115' and has space for the new LRT at the center of the street with 4' planted medians on each side. Three lanes of traffic are found in each direction with the pedestrian realm developed on each side with buildings located at its edge.
DOA 1 - Pedestrian Character Transit Street, Offset Station Platforms

Southeast Corridor proposed section - Scott t. at Anita St.

Southeast Corridor proposed section - Martin Luther King Blvd. at Cortelyou St.
C2.5.1.b
Pedestrian Character Major Thoroughfare

87. The hard surface of the sidewalk (the pedestrian realm) shall be a minimum of 15' wide, measured from the back-of-curb to the main front wall and/or exterior side wall of any adjacent building. This requirement may include components of the public right-of-way and/or private lands, as described in the discussion of the build-within zone.

88. The design of the 15' pedestrian realm shall include a “furnishing zone” for utilities, street furniture and street lighting adjacent to the curb, and a minimum 7', 6" unimpeded pedestrian sidewalk.

89. At all street intersections there shall be provisions for pedestrian crossings of the transit facility, regardless of whether or not the intersection is signalized. In addition, provisions for mid-block pedestrian crossings must be considered at intervals of approximately 300'. There shall never be a condition where distances between pedestrian crossings of the facility exceed 600'. Countdown pedestrian head signals shall be provided for all signalized crossings.

90. It is understood that the development of the required 15' pedestrian realm will occur over a long period of time, in conjunction with private sector redevelopment projects. In the interim, the City should build a connected sidewalk on the public component of the right-of-way concurrent with the development of the transit facilities. The maximum width of the pedestrian realm in this interim condition shall be 15', to be measured from the back-of-curb to the edge of the right-of-way.
Southeast Corridor

DOA-1 - Pedestrian Character Major Thoroughfare, Commercial

Major Thoroughfare rights-of-way are typically 80 to 100’, and include 48’ of pavement divided by a median of 14 to 32’. Rarely has a connected sidewalk system been provided. Major Thoroughfares that intersect with the Transit Street have been identified as Pedestrian Character Major Thoroughfares because they have the potential to provide a crucial connection from area focal points, such as neighborhoods and schools, to Transit Stations. A continuous and connected sidewalk system has been provided. A prototype street cross section indicates the following:

- Tree Wells and Planting
- Sidewalk Seating
- Bollards
- Awning
- Potential Mixed Use Development
- Sidewalk Seating
- Street Lights with Pedestrian Lighting

Southeast Corridor - Major Thoroughfare proposed section - Scott St. (Only in designated redevelopment areas.)
C2.5.1.c
Pedestrian Character Major Collector

91. The pedestrian realm shall be a minimum of 8’ wide, measured from the back-of-curb to edge of the right-of-way.

92. The pedestrian realm shall include a minimum 6’ wide sidewalk measured from the edge of the right-of-way. The sidewalk shall be continuous and extend across driveways.

93. The pedestrian realm shall include a planted boulevard with street trees next to the curb.

94. The planted boulevard should also be the location for utility poles, placed on the same alignment as the street trees.

Major Collectors range from 60’-80’, and include 44’ of pavement, and ditches on both sides. Rarely is a continuous and connected sidewalk system provided. Canal Street has been identified as a Pedestrian Character Major Collector because it is an important parallel street to the Harrisburg Transit Line and edge to neighborhoods. A prototype street cross section indicates the condition:
Southeast Corridor existing section - Mc Gowen St.

Southeast Corridor proposed section - Mc Gowen St.
Non-Mandatory DOA 1 - Design Guidelines

D2.5.1.d Pedestrian Character Local Street

95. The pedestrian realm shall be a minimum of 19’ wide, measured from the back-of-curb or the edge of the outside vehicle lane to the edge of the right-of-way.

96. The pedestrian realm shall include a minimum 6’ wide sidewalk. The sidewalk shall be continuous and extend across driveways.

97. On Pedestrian Character Local Streets with curbs, the pedestrian realm shall include a planted boulevard with street trees next to the curb.

98. The planted boulevard shall also be the location for utility poles, placed on the same alignment as the street trees.

99. On Pedestrian Character Local Streets with road side ditches, the tree shall be planted on the outside edge of the ditch adjacent to the sidewalk.

100. On Pedestrian Character Local Streets with road side ditches, utility poles shall be placed adjacent to the edge of the right-of-way.

Local street rights-of-way are typically 60’, and include 22’ of pavement. Some local streets have ditches on both sides. Rarely are sidewalks provided. Some local streets that intersect with the Transit Street have been identified as Pedestrian Character Local Streets because they have the potential to provide a crucial connection between the transit stations and a local pedestrian traffic generator, such as a school, recreation center, public park or place of worship. A prototype street cross section for a Pedestrian Character Local Street with and without a ditch indicates the following:
DOA 1 - Pedestrian Character Local Street Cross Section/Plan

Southeast Corridor

East Corridor Proposed Section - Eastwood St. with no curb

Southeast Corridor proposed section - Cleburne St. with curb

Housten Urban Corridor Planning
The Planning Strategy 2

Southeast Corridor proposed section - Claburne St. without curb

Southeast Corridor proposed section - Claburne St. with curb
Engineering / Infrastructure

101. The width of travel lanes along streets with transit should generally be 10'-11" in width.

102. Alleys should be designed to provide a 12'-0" paved surface.

103. No access should be allowed from the street for new developments fronting onto the street with transit.

104. All new development fronting on to streets with transit should indicated space for the provision of alleys or access to the site from side streets.

105. A plan for access to sites fronting onto the Transit Street should be developed by the proponent before construction of the Transit Line showing the following:
 - The preferred location for access into site along the line.
 - A phasing plan for combined access over time.
 - A phasing plan for the implementation of alleys or service lanes.

106. Provision for crosswalks between stations should be an integral part of the design of the streets with transit. The maximum distance between a station and a crosswalk shall be 1/4 of a mile.

107. The radius of corner conditions should be determined with the pedestrian in mind. Tighter radii corners slow traffic speeds and protect pedestrians.
 - Along the streets with transit corner radii for through streets should be no more then a 25'-0" radius.
 - For non-through streets intersecting the Transit Street corner, radii should be reduced to 20'-0".

108. Bicycle lanes should be explored as part of the design, access and phasing plans for the corridor streets. Where there is not enough room for bike lanes on transit streets, they should be part of the design of the connector streets that access stations.

109. Infrastructure services need to be developed with future intensification of the corridors in mind.

110. Infrastructure should be implemented as transit is being built.

111. The implementation and design of infrastructure should be carried out comprehensively by including all departments of the City, as well as utility providers.

112. All utilities should be buried along the corridors.

113. Consideration should be given to burying utilities under alleys.

114. Where it is impossible to bury utilities, the location of above ground components must be coordinated with the design of the pedestrian realm following the following guidelines:
 - Utility poles and transformers shall be located where they do not impact on the movement of pedestrians.
 - Utility poles and transformers shall be located according to an overall plan for the entire Corridor.
 - The form and design of above grade components to be approved by the City and Metro.

115. Accessibility should be designed into all sidewalk conditions along the corridors.
C2.5.2
Development Opportunity Area 2 - Downtown

Guidelines within the Development Opportunity Area 2 – Downtown include a combination of mandatory development requirements and optional design guides.

Mandatory
Mandatory Development Requirements within the defined Development Opportunity Area 2.

Statement of Application: Applies everywhere within the defined Development Opportunity Area 2 - Downtown

Pedestrian Realm

1. All buildings, with the exception of street facing townhouses, shall be developed with a substantial portion of their front and exterior side façades between 15 and 25' of the back-of-curb. It is understood that where a parcel has three sides abutting a public street, the build-within concept may not be achieved on the third side.

2. In all Transit Street Configurations, 15' from the back-of-curb is required for the pedestrian realm.

3. On all lands fronting onto a public street, a Major Thoroughfare and/or a Major Collector, the minimum build frontage requirement shall be 75% of the parcel frontage and shall be occupied by the main front wall of a building within the build-within zone.

Development Blocks

4. Notwithstanding the requirements for a minimum built frontage, where a publicly accessible and usable open space is provided abutting a front and/or exterior side parcel line, the frontage occupied by the publicly accessible and usable open space shall be counted toward the minimum build frontage requirement.

5. A minimum of 75% of the main front wall shall be at grade and, on a corner parcel, an exterior side wall at grade of any non-residential building shall consist of windows and entranceways that facilitate visibility into the building.

6. The City shall not accept cash-in-lieu of required street trees, unless a substantiated technical reason is provided that precludes street tree planting. Where cash-in-lieu of street trees is accepted, the monies received shall be utilized in coordination with the Parks and Recreation Master Plan to enhance tree cover in a local public park, or along the Transit Street within 1/4 mile of the development site from which the cash-in-lieu of street trees was accepted.

Encroachments

13. Permanent encroachments shall be considered for permitting on a site-by-site basis, subject to design performance standards (to be developed) that consider such features as shade / weather protection, pedestrian clear zone width, space for street tree canopy, right-of-way proportions, utility clearances, etc.

14. The amount of any permitted encroachment shall be established by the City on a site-by-site basis, and in consideration of the following criteria: the encroachment enhances pedestrian comfort by providing shade and/or protection from the rain; and, the encroachment does not impede pedestrian movement, and maintains an unobstructed sidewalk area of a minimum width of 5'.

this policy.

Buildings

10. Buildings of up to three stories may be built with zero setbacks to interior side parcel lines. Exterior side yards shall conform to the described build-within zones.

11. Buildings above three stories may include a zero interior side yard setback for the base building of three stories, but building side walls must be set back a minimum of 10' from the interior side yards for that component of the building above three stories.

12. The City will encourage a transitional rear alley or easement process, coupled with access management from pedestrian and transit streets, on a block-by-block basis, where possible and appropriate.
21. Street tree planting should form a continuous canopy along the street. Tree species should be selected by the applicable TIRZ/MMD to reinforce the role of the various street hierarchies within the Urban Corridors and to visually and thematically distinguish the Urban Corridors from one another. In instances where no TIRZ/MMD exists, the City will select the trees that they will plant.

22. Street trees should have a minimum size of 45 gal. and be planted 30’ on-center. Trees should be located in open planting pits where space permits and with wells sized at a minimum of 5’x10’. The planting pits should be filled with shrubs, perennials and annual plants. Planting pits should be edged with a low wall and/or fence.

23. Where space is limited, trees should be planted in continuous trenches. The rootball should be protected with a tree grate, ground cover or material such as gravel.

24. Where there is no room for street trees, consider a vertical shade element planted with vines to add special landscape treatment to the street.

25. Coordination of utilities, especially overhead power lines will be required during the design phase of street tree planting.

26. Consider a palette of the street furnishings, newspaper boxes, notice boards, bicycles racks, flower pots, luminaires and poles that will visually and thematically distinguish the each particular Urban Corridor from the others.

27. Concentrate mailboxes, vending machines, trash cans, and recycling bins in single locations to create active public space and minimize visual clutter.

28. Provide public amenities such as washrooms and field house where appropriate.

29. Provide programmed activities for a range of ages and demographics with emphasis on children and youth.

30. Provide a balance of passive and active park space and provide for the maximum program flexibility in the design of the parks.

31. Incorporate a greening strategy that includes tree planting and seasonal horticultural displays.

32. Incorporate sustainability practices both in terms of capital projects and operations.

33. Provide wayfinding and program information displays as well as heritage interpretation and public art.

Gateways

34. Gateways shall be either architectural, stand-alone features, or landscape treatments that define the main entrances to the Urban Corridors.

35. Features shall be lit to enhance their legibility at night.

36. The scale of the gateway shall be large enough to be visible from a car at a distance of at least 300’.

37. Gateways shall enhance and not compete with surrounding existing architectural and natural features.

Buildings

38. The minimum density for any Transit Oriented Development project shall be a Floor Area Ratio of 1.75.

39. There shall be no specified maximum density.

40. The minimum height for any Transit Oriented Development building shall be three stories, or 27’, whichever is greater. Buildings on corner sites shall be a minimum of four stories, or 36’, whichever is greater.
41. There shall be no specific height limit.
42. Corner building designs shall articulate, define and enhance the intersection at which it is located by enhancing the building’s presence at each corner.
43. Buildings should ‘turn’ the corner, i.e. they should have primary, articulated façades towards both streets and should be visually different from adjacent development.
44. Large areas and continuous rows of monotonous and repetitive façades shall be avoided. A more textured architectural quality can be achieved by introducing variation in certain elements of the façade treatment.
45. Variation in three-dimensional elements, such as balconies, bay windows and porches, cornices, window trim, entrances and the articulation of the building mass, shall be used to create a dynamic façade.
46. Variation and articulation in the building mass including horizontal and vertical setbacks, such as step backs at the upper stories, shall be established.
47. A pedestrian weather protection system including awnings, canopies, colonnades, or front porches along the sidewalk edges and adjacent to the urban squares/plazas and at entrances to buildings shall be considered. The City will promote Temporary or Permanent Encroachment Permits for both signage and awnings.

Signage
48. Signage will address the amount and type of illumination, size, materials, typography and design.
49. Signage should be an integral part of the architecture of a building.

50. Signs should be designed to complement the building and enhance the visual appeal of the street.
51. Signs should be designed in consideration of nearby residential uses, in terms of size, materials, and location.
52. The ratio of sign band to building mass should be restricted such that the signage does not dominate the façade.
53. Mobile box signage is not allowed.
54. Neon lights are allowed when they do not dominate the signage and have no negative impacts on nearby residences.
55. Exterior lighting shall be designed to promote pedestrian comfort, safety and provide a high quality ambiance. In addition, accent lighting is required to emphasize built form and landscape elements. Pedestrian scale lighting shall be provided adjacent to streets, walkways, pedestrian routes and in parks and courtyards.
56. Internally lit canopies are strongly discouraged.
57. Commercial façades should be appropriately lit.
58. Pedestrian realm signage and lighting should be coordinated. Pole mounted pedestrian light fixtures with a light source at 12 to 15’ high and a spacing of 30 to 50’ is recommended.

Mid-Block Pedestrian Connections
59. Mid-block pedestrian connections shall be provided within larger development parcels. These are intended to be designed as pedestrian landscaped lanes and should be lit, landscaped and maintained for public.
60. Mid-block pedestrian connections shall provide a fine grain of pedestrian circulation and an important connection between two streets.

61. Mid-block pedestrian connections shall lead to public destinations such as schools, parks and public transit stations.
62. Mid-block pedestrian connections shall provide an address to individual residential or business frontages along their lengths.

Parking
63. General public parking (surface lots and / or structured parking facilities) to serve TOO areas will be provided to augment the supply of parking.
64. On-street parking shall be promoted within all of the Urban Corridors.
65. The City shall pursue opportunities for the establishment of on-street parking in partnership with adjacent landowners where the spaces are provided on a combination of public land and private property, with public access to the parking spaces secured through agreements with the City.
66. Surface parking, loading areas, drive-through lanes and servicing facilities shall not be permitted in front of Transit Oriented Development buildings. Surface parking, drive-through lanes and / or servicing facilities may be permitted in an interior side yards, and are permitted within the rear yard.
67. Surface parking, loading areas, drive-through lanes and servicing facilities, where permitted, shall be appropriately screened from view from the street. Surface parking lots shall respect the build-within zones. Where surface parking must be provided, the visual impact of large surface lots shall be mitigated by a combination of setbacks, and significant landscaping including: pavement treatments, low walls or decorative fencing, landscape, trees and lighting throughout parking lots and along the edges.
Parking is encouraged to be provided in structures, either above, or where possible, below grade. Where a parking structure is above grade, it shall include a façade with active uses at grade and appropriate architectural articulation. Entrances to below grade or structured parking and service areas should occur within the building.

Access to parking and servicing areas should occur off side streets or service lanes and to the side or rear of buildings, where possible.

It is an objective of the City to limit access driveways to individual sites adjacent to the Transit Street. The City shall encourage shared access driveways and, preferably, shared rear lane access for all Transit Oriented Development. Where new development is proposed, the City shall require a minimum of 100' between access driveways onto the Transit Streets.

The hard surface of the sidewalk (the pedestrian realm) shall be a minimum of 15' wide, measured from the back-of-curb to the main front wall and/or exterior side wall of any adjacent building. This requirement may include components of the public right-of-way and/or private lands, as described in the discussion of the build-within zone.

The design of the 15' pedestrian realm shall include a “furnishing zone” for utilities, street furniture and street lighting adjacent to the curb, and a minimum 7' 6" unimpeded pedestrian sidewalk.

At all street intersections there shall be provisions for pedestrian crossings of the transit facility, regardless of whether or not the intersection is signalized. In addition, provisions for mid-block pedestrian crossings must be considered at intervals of approximately 300'. There shall never be a condition where distances between pedestrian crossings of the facility exceed 600'. Countdown pedestrian head signals shall be provided for at all signaled crossings.

It is understood that the development of the required 15' pedestrian realm will occur over a long period of time, in conjunction with private sector redevelopment projects. In the interim, the City should build a connected sidewalk on the public component of the right-of-way concurrent with the development of the transit facilities. The maximum width of the pedestrian realm in this interim condition shall be 15', to be measured from the back-of-curb to the edge of the right-of-way.

The pedestrian realm shall be a minimum of 8' wide, measured from the back-of-curb to edge of the right-of-way.

The pedestrian realm shall include a minimum 6' wide sidewalk measured from the edge of the right-of-way. The sidewalk shall be continuous and extend across driveways.

The pedestrian realm shall include a planted boulevard with street trees next to the curb.

The planted boulevard should also be the location for utility poles, placed on the same alignment as the street trees.

The planed Character Local Streets with road side driveways, the trees shall be planted on the outside edge of the ditch adjacent to the sidewalk.

The width of travel lanes along streets with transit should generally be 10'-11" in width.

Alleys should be designed to provide an 12'-0" paved surface.

No access should be allowed from the street for new developments fronting onto the street with transit.

All new development fronting on to streets with transit should indicated space for the provision of alleys or access to the site from side streets.

A plan for access to sites fronting onto the Transit Street should be developed by the applicant before construction of the Transit Line showing the following:

- The preferred location for access into site along the line.
- A phasing plan for combined access over time.
- A phasing plan for the implementation of alleys or service lanes.

Provision for cross walks between stations should be an integral part of the design of the streets with
transit. The maximum distance between a Station and a crosswalk shall be 1/4 of a mile.

91. The radius of corner conditions should be determined with the pedestrian in mind. Tighter radii corners slow traffic speeds and protect pedestrians.
 - Along the streets with transit corner radii for through streets should be no more than a 25'-0" radius.
 - For non-through streets intersecting the Transit Street corner, radii should be reduced to 20'-0".

92. Bicycle lanes should be explored as part of the design, access and phasing plans for the corridor streets. Where there is not enough room for bike lanes on Transit Streets, they should be part of the design of the connector streets that access Stations.

93. Infrastructure services need to be developed with future intensification of the Corridor in mind.

94. Infrastructure should be implemented as transit is being built.

95. The implementation and design of infrastructure should be carried out comprehensively by including all departments of the City, as well as utility providers.

96. All utilities should be buried along the Corridor.

97. Consideration should be given to burying utilities under alleys.

98. Where it is impossible to bury utilities, the location of above ground components must be coordinated with the design of the pedestrian realm following the following guidelines:
 - Utility poles and transformers shall be located where they do not impact on the movement of pedestrians.

 - Utility poles and transformers shall be located according to an overall plan for the entire Corridor.
 - The form and design of above ground components to be approved by the City and Metro.

99. Accessibility should be designed into all sidewalk conditions along the Corridor.