rsync(1)                                                                                                                               rsync(1)



NAME
       rsync - a fast, versatile, remote (and local) file-copying tool

SYNOPSIS
       Local:  rsync [OPTION...] SRC... [DEST]

       Access via remote shell:
         Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
         Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

       Access via rsync daemon:
         Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
               rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
         Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
               rsync [OPTION...] SRC... rsync://[USER@]HOST[:PORT]/DEST


       Usages with just one SRC arg and no DEST arg will list the source files instead of copying.

DESCRIPTION
       Rsync  is  a  fast and extraordinarily versatile file copying tool.  It can copy locally, to/from another host over any remote shell, or
       to/from a remote rsync daemon.  It offers a large number of options that control every aspect of its behavior and permit  very  flexible
       specification  of  the  set of files to be copied.  It is famous for its delta-transfer algorithm, which reduces the amount of data sent
       over the network by sending only the differences between the source files and the existing files in the destination.   Rsync  is  widely
       used for backups and mirroring and as an improved copy command for everyday use.

       Rsync  finds  files  that  need to be transferred using a "quick check" algorithm (by default) that looks for files that have changed in
       size or in last-modified time.  Any changes in the other preserved attributes (as requested by options) are made on the destination file
       directly when the quick check indicates that the file’s data does not need to be updated.

       Some of the additional features of rsync are:

       o      support for copying links, devices, owners, groups, and permissions

       o      exclude and exclude-from options similar to GNU tar

       o      a CVS exclude mode for ignoring the same files that CVS would ignore

       o      can use any transparent remote shell, including ssh or rsh

       o      does not require super-user privileges

       o      pipelining of file transfers to minimize latency costs

       o      support for anonymous or authenticated rsync daemons (ideal for mirroring)


GENERAL
       Rsync copies files either to or from a remote host, or locally on the current host (it does not support copying files between two remote
       hosts).

       There are two different ways for rsync to contact a remote system: using a remote-shell program as the transport (such as ssh or rsh) or
       contacting an rsync daemon directly via TCP.  The remote-shell transport is used whenever the source or destination path contains a sin‐
       gle colon (:) separator after a host specification.  Contacting an rsync daemon directly happens when the  source  or  destination  path
       contains  a double colon (::) separator after a host specification, OR when an rsync:// URL is specified (see also the "USING RSYNC-DAE‐
       MON FEATURES VIA A REMOTE-SHELL CONNECTION" section for an exception to this latter rule).

       As a special case, if a single source arg is specified without a destination, the files are listed in an output format  similar  to  "ls
       -l".

       As expected, if neither the source or destination path specify a remote host, the copy occurs locally (see also the --list-only option).

       Rsync  refers  to  the local side as the "client" and the remote side as the "server".  Don’t confuse "server" with an rsync daemon -- a
       daemon is always a server, but a server can be either a daemon or a remote-shell spawned process.

SETUP
       See the file README for installation instructions.

       Once installed, you can use rsync to any machine that you can access via a remote shell (as well as some that you can access  using  the
       rsync  daemon-mode  protocol).  For remote transfers, a modern rsync uses ssh for its communications, but it may have been configured to
       use a different remote shell by default, such as rsh or remsh.

       You can also specify any remote shell you like, either by using the -e command line option, or  by  setting  the  RSYNC_RSH  environment
       variable.

       Note that rsync must be installed on both the source and destination machines.

USAGE
       You use rsync in the same way you use rcp. You must specify a source and a destination, one of which may be remote.

       Perhaps the best way to explain the syntax is with some examples:

              rsync -t *.c foo:src/


       This would transfer all files matching the pattern *.c from the current directory to the directory src on the machine foo. If any of the
       files already exist on the remote system then the rsync remote-update protocol is used to update the file by sending  only  the  differ‐
       ences. See the tech report for details.

              rsync -avz foo:src/bar /data/tmp


       This  would  recursively  transfer all files from the directory src/bar on the machine foo into the /data/tmp/bar directory on the local
       machine. The files are transferred in "archive" mode, which ensures that symbolic links, devices, attributes,  permissions,  ownerships,
       etc. are preserved in the transfer.  Additionally, compression will be used to reduce the size of data portions of the transfer.

              rsync -avz foo:src/bar/ /data/tmp


       A  trailing slash on the source changes this behavior to avoid creating an additional directory level at the destination.  You can think
       of a trailing / on a source as meaning "copy the contents of this directory" as opposed to "copy the directory by  name",  but  in  both
       cases  the  attributes of the containing directory are transferred to the containing directory on the destination.  In other words, each
       of the following commands copies the files in the same way, including their setting of the attributes of /dest/foo:

              rsync -av /src/foo /dest
              rsync -av /src/foo/ /dest/foo


       Note also that host and module references don’t require a trailing slash to copy the contents of the default  directory.   For  example,
       both of these copy the remote directory’s contents into "/dest":

              rsync -av host: /dest
              rsync -av host::module /dest


       You  can  also use rsync in local-only mode, where both the source and destination don’t have a ’:’ in the name. In this case it behaves
       like an improved copy command.

       Finally, you can list all the (listable) modules available from a particular rsync daemon by leaving off the module name:

              rsync somehost.mydomain.com::


       See the following section for more details.

ADVANCED USAGE
       The syntax for requesting multiple files from a remote host is done by specifying additional remote-host args in the same style  as  the
       first, or with the hostname omitted.  For instance, all these work:

              rsync -av host:file1 :file2 host:file{3,4} /dest/
              rsync -av host::modname/file{1,2} host::modname/file3 /dest/
              rsync -av host::modname/file1 ::modname/file{3,4}


       Older versions of rsync required using quoted spaces in the SRC, like these examples:

              rsync -av host:'dir1/file1 dir2/file2' /dest
              rsync host::'modname/dir1/file1 modname/dir2/file2' /dest


       This word-splitting still works (by default) in the latest rsync, but is not as easy to use as the first method.

       If  you  need  to transfer a filename that contains whitespace, you can either specify the --protect-args (-s) option, or you’ll need to
       escape the whitespace in a way that the remote shell will understand.  For instance:

              rsync -av host:'file\ name\ with\ spaces' /dest


CONNECTING TO AN RSYNC DAEMON
       It is also possible to use rsync without a remote shell as the transport.  In this case you will directly connect to a remote rsync dae‐
       mon,  typically using TCP port 873.  (This obviously requires the daemon to be running on the remote system, so refer to the STARTING AN
       RSYNC DAEMON TO ACCEPT CONNECTIONS section below for information on that.)

       Using rsync in this way is the same as using it with a remote shell except that:

       o      you either use a double colon :: instead of a single colon to separate the hostname from the path, or you use an rsync:// URL.

       o      the first word of the "path" is actually a module name.

       o      the remote daemon may print a message of the day when you connect.

       o      if you specify no path name on the remote daemon then the list of accessible paths on the daemon will be shown.

       o      if you specify no local destination then a listing of the specified files on the remote daemon is provided.

       o      you must not specify the --rsh (-e) option.


       An example that copies all the files in a remote module named "src":

           rsync -av host::src /dest


       Some modules on the remote daemon may require authentication. If so, you will receive a password prompt when you connect. You can  avoid
       the  password  prompt  by  setting  the environment variable RSYNC_PASSWORD to the password you want to use or using the --password-file
       option. This may be useful when scripting rsync.

       WARNING: On some systems environment variables are visible to all users. On those systems using --password-file is recommended.

       You may establish the connection via a web proxy by setting the environment variable RSYNC_PROXY to a  hostname:port  pair  pointing  to
       your web proxy.  Note that your web proxy’s configuration must support proxy connections to port 873.

       You may also establish a daemon connection using a program as a proxy by setting the environment variable RSYNC_CONNECT_PROG to the com‐
       mands you wish to run in place of making a direct socket connection.  The string may contain the escape "%H" to represent  the  hostname
       specified in the rsync command (so use "%%" if you need a single "%" in your string).  For example:

         export RSYNC_CONNECT_PROG='ssh proxyhost nc %H 873'
         rsync -av targethost1::module/src/ /dest/
         rsync -av rsync:://targethost2/module/src/ /dest/


       The  command  specified  above uses ssh to run nc (netcat) on a proxyhost, which forwards all data to port 873 (the rsync daemon) on the
       targethost (%H).

USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION
       It is sometimes useful to use various features of an rsync daemon (such as named modules) without actually allowing any new socket  con‐
       nections  into a system (other than what is already required to allow remote-shell access).  Rsync supports connecting to a host using a
       remote shell and then spawning a single-use "daemon" server that expects to read its config file in the home dir  of  the  remote  user.
       This  can  be useful if you want to encrypt a daemon-style transfer’s data, but since the daemon is started up fresh by the remote user,
       you may not be able to use features such as chroot or change the uid used by the daemon.  (For another way to encrypt a daemon transfer,
       consider using ssh to tunnel a local port to a remote machine and configure a normal rsync daemon on that remote host to only allow con‐
       nections from "localhost".)

       From the user’s perspective, a daemon transfer via a remote-shell connection uses nearly  the  same  command-line  syntax  as  a  normal
       rsync-daemon  transfer, with the only exception being that you must explicitly set the remote shell program on the command-line with the
       --rsh=COMMAND option.  (Setting the RSYNC_RSH in the environment will not turn on this functionality.)  For example:

           rsync -av --rsh=ssh host::module /dest


       If you need to specify a different remote-shell user, keep in mind that the user@  prefix  in  front  of  the  host  is  specifying  the
       rsync-user value (for a module that requires user-based authentication).  This means that you must give the ’-l user’ option to ssh when
       specifying the remote-shell, as in this example that uses the short version of the --rsh option:

           rsync -av -e "ssh -l ssh-user" rsync-user@host::module /dest


       The "ssh-user" will be used at the ssh level; the "rsync-user" will be used to log-in to the "module".

STARTING AN RSYNC DAEMON TO ACCEPT CONNECTIONS
       In order to connect to an rsync daemon, the remote system needs to have a daemon already running (or it needs to have  configured  some‐
       thing like inetd to spawn an rsync daemon for incoming connections on a particular port).  For full information on how to start a daemon
       that will handling incoming socket connections, see the rsyncd.conf(5) man page -- that is the config file for the daemon, and  it  con‐
       tains the full details for how to run the daemon (including stand-alone and inetd configurations).

       If you’re using one of the remote-shell transports for the transfer, there is no need to manually start an rsync daemon.

SORTED TRANSFER ORDER
       Rsync  always sorts the specified filenames into its internal transfer list.  This handles the merging together of the contents of iden‐
       tically named directories, makes it easy to remove duplicate filenames, and may confuse someone when the files are transferred in a dif‐
       ferent order than what was given on the command-line.

       If  you  need  a  particular  file to be transferred prior to another, either separate the files into different rsync calls, or consider
       using --delay-updates (which doesn’t affect the sorted transfer order, but does make the final  file-updating  phase  happen  much  more
       rapidly).

EXAMPLES
       Here are some examples of how I use rsync.

       To backup my wife’s home directory, which consists of large MS Word files and mail folders, I use a cron job that runs

              rsync -Cavz . arvidsjaur:backup


       each night over a PPP connection to a duplicate directory on my machine "arvidsjaur".

       To synchronize my samba source trees I use the following Makefile targets:

           get:
                   rsync -avuzb --exclude '*~' samba:samba/ .
           put:
                   rsync -Cavuzb . samba:samba/
           sync: get put


       this  allows  me  to sync with a CVS directory at the other end of the connection. I then do CVS operations on the remote machine, which
       saves a lot of time as the remote CVS protocol isn’t very efficient.

       I mirror a directory between my "old" and "new" ftp sites with the command:

       rsync -az -e ssh --delete ~ftp/pub/samba nimbus:"~ftp/pub/tridge"

       This is launched from cron every few hours.

OPTIONS SUMMARY
       Here is a short summary of the options available in rsync. Please refer to the detailed description below for a complete description.

        -v, --verbose               increase verbosity
        -q, --quiet                 suppress non-error messages
            --no-motd               suppress daemon-mode MOTD (see caveat)
        -c, --checksum              skip based on checksum, not mod-time & size
        -a, --archive               archive mode; equals -rlptgoD (no -H,-A,-X)
            --no-OPTION             turn off an implied OPTION (e.g. --no-D)
        -r, --recursive             recurse into directories
        -R, --relative              use relative path names
            --no-implied-dirs       don't send implied dirs with --relative
        -b, --backup                make backups (see --suffix & --backup-dir)
            --backup-dir=DIR        make backups into hierarchy based in DIR
            --suffix=SUFFIX         backup suffix (default ~ w/o --backup-dir)
        -u, --update                skip files that are newer on the receiver
            --inplace               update destination files in-place
            --append                append data onto shorter files
            --append-verify         --append w/old data in file checksum
        -d, --dirs                  transfer directories without recursing
        -l, --links                 copy symlinks as symlinks
        -L, --copy-links            transform symlink into referent file/dir
            --copy-unsafe-links     only "unsafe" symlinks are transformed
            --safe-links            ignore symlinks that point outside the tree
        -k, --copy-dirlinks         transform symlink to dir into referent dir
        -K, --keep-dirlinks         treat symlinked dir on receiver as dir
        -H, --hard-links            preserve hard links
        -p, --perms                 preserve permissions
        -E, --executability         preserve executability
            --chmod=CHMOD           affect file and/or directory permissions
        -A, --acls                  preserve ACLs (implies -p)
        -X, --xattrs                preserve extended attributes
        -o, --owner                 preserve owner (super-user only)
        -g, --group                 preserve group
            --devices               preserve device files (super-user only)
            --copy-devices          copy device contents as regular file
            --specials              preserve special files
        -D                          same as --devices --specials
        -t, --times                 preserve modification times
        -O, --omit-dir-times        omit directories from --times
            --super                 receiver attempts super-user activities
            --fake-super            store/recover privileged attrs using xattrs
        -S, --sparse                handle sparse files efficiently
        -n, --dry-run               perform a trial run with no changes made
        -W, --whole-file            copy files whole (w/o delta-xfer algorithm)
        -x, --one-file-system       don't cross filesystem boundaries
        -B, --block-size=SIZE       force a fixed checksum block-size
        -e, --rsh=COMMAND           specify the remote shell to use
            --rsync-path=PROGRAM    specify the rsync to run on remote machine
            --existing              skip creating new files on receiver
            --ignore-existing       skip updating files that exist on receiver
            --remove-source-files   sender removes synchronized files (non-dir)
            --del                   an alias for --delete-during
            --delete                delete extraneous files from dest dirs
            --delete-before         receiver deletes before xfer, not during
            --delete-during         receiver deletes during the transfer
            --delete-delay          find deletions during, delete after
            --delete-after          receiver deletes after transfer, not during
            --delete-excluded       also delete excluded files from dest dirs
            --ignore-errors         delete even if there are I/O errors
            --force                 force deletion of dirs even if not empty
            --max-delete=NUM        don't delete more than NUM files
            --max-size=SIZE         don't transfer any file larger than SIZE
            --min-size=SIZE         don't transfer any file smaller than SIZE
            --partial               keep partially transferred files
            --partial-dir=DIR       put a partially transferred file into DIR
            --delay-updates         put all updated files into place at end
        -m, --prune-empty-dirs      prune empty directory chains from file-list
            --numeric-ids           don't map uid/gid values by user/group name
            --timeout=SECONDS       set I/O timeout in seconds
            --contimeout=SECONDS    set daemon connection timeout in seconds
        -I, --ignore-times          don't skip files that match size and time
            --size-only             skip files that match in size
            --modify-window=NUM     compare mod-times with reduced accuracy
        -T, --temp-dir=DIR          create temporary files in directory DIR
        -y, --fuzzy                 find similar file for basis if no dest file
            --compare-dest=DIR      also compare received files relative to DIR
            --copy-dest=DIR         ... and include copies of unchanged files
            --link-dest=DIR         hardlink to files in DIR when unchanged
        -z, --compress              compress file data during the transfer
            --compress-level=NUM    explicitly set compression level
            --skip-compress=LIST    skip compressing files with suffix in LIST
        -C, --cvs-exclude           auto-ignore files in the same way CVS does
        -f, --filter=RULE           add a file-filtering RULE
        -F                          same as --filter='dir-merge /.rsync-filter'
                                    repeated: --filter='- .rsync-filter'
            --exclude=PATTERN       exclude files matching PATTERN
            --exclude-from=FILE     read exclude patterns from FILE
            --include=PATTERN       don't exclude files matching PATTERN
            --include-from=FILE     read include patterns from FILE
            --files-from=FILE       read list of source-file names from FILE
        -0, --from0                 all *from/filter files are delimited by 0s
        -s, --protect-args          no space-splitting; wildcard chars only
            --address=ADDRESS       bind address for outgoing socket to daemon
            --port=PORT             specify double-colon alternate port number
            --sockopts=OPTIONS      specify custom TCP options
            --blocking-io           use blocking I/O for the remote shell
            --stats                 give some file-transfer stats
        -8, --8-bit-output          leave high-bit chars unescaped in output
        -h, --human-readable        output numbers in a human-readable format
            --progress              show progress during transfer
        -P                          same as --partial --progress
        -i, --itemize-changes       output a change-summary for all updates
            --out-format=FORMAT     output updates using the specified FORMAT
            --log-file=FILE         log what we're doing to the specified FILE
            --log-file-format=FMT   log updates using the specified FMT
            --password-file=FILE    read daemon-access password from FILE
            --list-only             list the files instead of copying them
            --bwlimit=KBPS          limit I/O bandwidth; KBytes per second
            --write-batch=FILE      write a batched update to FILE
            --only-write-batch=FILE like --write-batch but w/o updating dest
            --read-batch=FILE       read a batched update from FILE
            --protocol=NUM          force an older protocol version to be used
            --iconv=CONVERT_SPEC    request charset conversion of filenames
            --checksum-seed=NUM     set block/file checksum seed (advanced)
        -4, --ipv4                  prefer IPv4
        -6, --ipv6                  prefer IPv6
            --version               print version number
       (-h) --help                  show this help (see below for -h comment)


       Rsync can also be run as a daemon, in which case the following options are accepted:

            --daemon                run as an rsync daemon
            --address=ADDRESS       bind to the specified address
            --bwlimit=KBPS          limit I/O bandwidth; KBytes per second
            --config=FILE           specify alternate rsyncd.conf file
            --no-detach             do not detach from the parent
            --port=PORT             listen on alternate port number
            --log-file=FILE         override the "log file" setting
            --log-file-format=FMT   override the "log format" setting
            --sockopts=OPTIONS      specify custom TCP options
        -v, --verbose               increase verbosity
        -4, --ipv4                  prefer IPv4
        -6, --ipv6                  prefer IPv6
        -h, --help                  show this help (if used after --daemon)


OPTIONS
       Rsync accepts both long (double-dash + word) and short (single-dash + letter) options.  The full  list  of  the  available  options  are
       described  below.   If  an option can be specified in more than one way, the choices are comma-separated.  Some options only have a long
       variant, not a short.  If the option takes a parameter, the parameter is only listed after the long variant, even though it must also be
       specified  for  the  short.  When specifying a parameter, you can either use the form --option=param or replace the ’=’ with whitespace.
       The parameter may need to be quoted in some manner for it to survive the shell’s command-line parsing.  Keep  in  mind  that  a  leading
       tilde  (~)  in a filename is substituted by your shell, so --option=~/foo will not change the tilde into your home directory (remove the
       ’=’ for that).

       --help Print a short help page describing the options available in rsync and exit.  For backward-compatibility with  older  versions  of
              rsync, the help will also be output if you use the -h option without any other args.

       --version
              print the rsync version number and exit.

       -v, --verbose
              This option increases the amount of information you are given during the transfer.  By default, rsync works silently. A single -v
              will give you information about what files are being transferred and a brief summary at the end. Two -v  options  will  give  you
              information  on  what  files  are being skipped and slightly more information at the end. More than two -v options should only be
              used if you are debugging rsync.

              Note that the names of the transferred files that are output are done using a default --out-format of  "%n%L",  which  tells  you
              just  the  name of the file and, if the item is a link, where it points.  At the single -v level of verbosity, this does not men‐
              tion when a file gets its attributes changed.  If you ask for an itemized list of changed attributes (either --itemize-changes or
              adding  "%i" to the --out-format setting), the output (on the client) increases to mention all items that are changed in any way.
              See the --out-format option for more details.

       -q, --quiet
              This option decreases the amount of information you are given during the transfer, notably suppressing information messages  from
              the remote server. This option is useful when invoking rsync from cron.

       --no-motd
              This  option  affects  the  information that is output by the client at the start of a daemon transfer.  This suppresses the mes‐
              sage-of-the-day (MOTD) text, but it also affects the list of modules that the daemon sends in  response  to  the  "rsync  host::"
              request (due to a limitation in the rsync protocol), so omit this option if you want to request the list of modules from the dae‐
              mon.

       -I, --ignore-times
              Normally rsync will skip any files that are already the same size and have the same modification timestamp.   This  option  turns
              off this "quick check" behavior, causing all files to be updated.

       --size-only
              This  modifies  rsync’s  "quick  check"  algorithm for finding files that need to be transferred, changing it from the default of
              transferring files with either a changed size or a changed last-modified time to just looking for  files  that  have  changed  in
              size.  This is useful when starting to use rsync after using another mirroring system which may not preserve timestamps exactly.

       --modify-window
              When comparing two timestamps, rsync treats the timestamps as being equal if they differ by no more than the modify-window value.
              This is normally 0 (for an exact match), but you may find it useful to set this to a larger value in some situations.  In partic‐
              ular,  when  transferring  to  or  from  an MS Windows FAT filesystem (which represents times with a 2-second resolution), --mod‐
              ify-window=1 is useful (allowing times to differ by up to 1 second).

       -c, --checksum
              This changes the way rsync checks if the files have been changed and are in need of a transfer.  Without this option, rsync  uses
              a "quick check" that (by default) checks if each file’s size and time of last modification match between the sender and receiver.
              This option changes this to compare a 128-bit checksum for each file that has a matching size.  Generating  the  checksums  means
              that both sides will expend a lot of disk I/O reading all the data in the files in the transfer (and this is prior to any reading
              that will be done to transfer changed files), so this can slow things down significantly.

              The sending side generates its checksums while it is doing the file-system scan that builds the list of the available files.  The
              receiver  generates its checksums when it is scanning for changed files, and will checksum any file that has the same size as the
              corresponding sender’s file:  files with either a changed size or a changed checksum are selected for transfer.

              Note that rsync always verifies that each transferred file was correctly reconstructed  on  the  receiving  side  by  checking  a
              whole-file  checksum that is generated as the file is transferred, but that automatic after-the-transfer verification has nothing
              to do with this option’s before-the-transfer "Does this file need to be updated?" check.

              For protocol 30 and beyond (first supported in 3.0.0), the checksum used is MD5.  For older protocols, the checksum used is MD4.

       -a, --archive
              This is equivalent to -rlptgoD. It is a quick way of saying you want recursion and want to preserve almost  everything  (with  -H
              being  a  notable  omission).  The only exception to the above equivalence is when --files-from is specified, in which case -r is
              not implied.

              Note that -a does not preserve hardlinks, because finding multiply-linked files is expensive.  You must separately specify -H.

       --no-OPTION
              You may turn off one or more implied options by prefixing the option name with "no-".  Not all options may  be  prefixed  with  a
              "no-":  only  options  that  are implied by other options (e.g. --no-D, --no-perms) or have different defaults in various circum‐
              stances (e.g. --no-whole-file, --no-blocking-io, --no-dirs).  You may specify either the short or the long option name after  the
              "no-" prefix (e.g. --no-R is the same as --no-relative).

              For  example:  if  you  want  to use -a (--archive) but don’t want -o (--owner), instead of converting -a into -rlptgD, you could
              specify -a --no-o (or -a --no-owner).

              The order of the options is important:  if you specify --no-r -a, the -r option would end up being turned on, the opposite of  -a
              --no-r.   Note  also that the side-effects of the --files-from option are NOT positional, as it affects the default state of sev‐
              eral options and slightly changes the meaning of -a (see the --files-from option for more details).

       -r, --recursive
              This tells rsync to copy directories recursively.  See also --dirs (-d).

              Beginning with rsync 3.0.0, the recursive algorithm used is now an incremental scan that uses much less memory  than  before  and
              begins  the transfer after the scanning of the first few directories have been completed.  This incremental scan only affects our
              recursion algorithm, and does not change a non-recursive transfer.  It is also only possible when both ends of the  transfer  are
              at least version 3.0.0.

              Some  options  require rsync to know the full file list, so these options disable the incremental recursion mode.  These include:
              --delete-before, --delete-after, --prune-empty-dirs, and --delay-updates.  Because of this, the  default  delete  mode  when  you
              specify  --delete  is  now  --delete-during  when both ends of the connection are at least 3.0.0 (use --del or --delete-during to
              request this improved deletion mode explicitly).  See also  the  --delete-delay  option  that  is  a  better  choice  than  using
              --delete-after.

              Incremental recursion can be disabled using the --no-inc-recursive option or its shorter --no-i-r alias.

       -R, --relative
              Use relative paths. This means that the full path names specified on the command line are sent to the server rather than just the
              last parts of the filenames. This is particularly useful when you want to send several different directories at  the  same  time.
              For example, if you used this command:

                 rsync -av /foo/bar/baz.c remote:/tmp/


              ... this would create a file named baz.c in /tmp/ on the remote machine. If instead you used

                 rsync -avR /foo/bar/baz.c remote:/tmp/


              then a file named /tmp/foo/bar/baz.c would be created on the remote machine, preserving its full path.  These extra path elements
              are called "implied directories" (i.e. the "foo" and the "foo/bar" directories in the above example).

              Beginning with rsync 3.0.0, rsync always sends these implied directories as real directories in the file list,  even  if  a  path
              element  is really a symlink on the sending side.  This prevents some really unexpected behaviors when copying the full path of a
              file that you didn’t realize had a symlink in its path.  If you want to duplicate a server-side symlink, include both the symlink
              via  its path, and referent directory via its real path.  If you’re dealing with an older rsync on the sending side, you may need
              to use the --no-implied-dirs option.

              It is also possible to limit the amount of path information that is sent as implied directories for each path you specify.   With
              a modern rsync on the sending side (beginning with 2.6.7), you can insert a dot and a slash into the source path, like this:

                 rsync -avR /foo/./bar/baz.c remote:/tmp/


              That would create /tmp/bar/baz.c on the remote machine.  (Note that the dot must be followed by a slash, so "/foo/." would not be
              abbreviated.)  For older rsync versions, you would need to use a chdir to limit the  source  path.   For  example,  when  pushing
              files:

                 (cd /foo; rsync -avR bar/baz.c remote:/tmp/)


              (Note  that  the  parens put the two commands into a sub-shell, so that the "cd" command doesn’t remain in effect for future com‐
              mands.)  If you’re pulling files from an older rsync, use this idiom (but only for a non-daemon transfer):

                 rsync -avR --rsync-path="cd /foo; rsync" \
                     remote:bar/baz.c /tmp/


       --no-implied-dirs
              This option affects the default behavior of the --relative option.  When it is specified, the attributes of the implied  directo‐
              ries  from the source names are not included in the transfer.  This means that the corresponding path elements on the destination
              system are left unchanged if they exist, and any missing implied directories are created  with  default  attributes.   This  even
              allows these implied path elements to have big differences, such as being a symlink to a directory on the receiving side.

              For instance, if a command-line arg or a files-from entry told rsync to transfer the file "path/foo/file", the directories "path"
              and "path/foo" are implied when --relative is used.  If "path/foo" is a symlink to "bar" on the destination system, the receiving
              rsync  would  ordinarily  delete  "path/foo",  recreate  it  as  a  directory, and receive the file into the new directory.  With
              --no-implied-dirs, the receiving rsync updates "path/foo/file" using the existing path elements, which means that the  file  ends
              up  being  created  in  "path/bar".  Another way to accomplish this link preservation is to use the --keep-dirlinks option (which
              will also affect symlinks to directories in the rest of the transfer).

              When pulling files from an rsync older than 3.0.0, you may need to use this option if the sending side has a symlink in the  path
              you request and you wish the implied directories to be transferred as normal directories.

       -b, --backup
              With  this  option,  preexisting destination files are renamed as each file is transferred or deleted.  You can control where the
              backup file goes and what (if any) suffix gets appended using the --backup-dir and --suffix options.

              Note that if you don’t specify --backup-dir, (1) the --omit-dir-times option will be implied, and (2)  if  --delete  is  also  in
              effect  (without --delete-excluded), rsync will add a "protect" filter-rule for the backup suffix to the end of all your existing
              excludes (e.g. -f "P *~").  This will prevent previously backed-up files from being deleted.  Note that if you are supplying your
              own  filter rules, you may need to manually insert your own exclude/protect rule somewhere higher up in the list so that it has a
              high enough priority to be effective (e.g., if your rules specify a trailing inclusion/exclusion  of  ’*’,  the  auto-added  rule
              would never be reached).

       --backup-dir=DIR
              In  combination with the --backup option, this tells rsync to store all backups in the specified directory on the receiving side.
              This can be used for incremental backups.  You can additionally specify a backup suffix using the --suffix option (otherwise  the
              files backed up in the specified directory will keep their original filenames).

              Note  that  if  you  specify a relative path, the backup directory will be relative to the destination directory, so you probably
              want to specify either an absolute path or a path that starts with "../".  If an rsync daemon is the  receiver,  the  backup  dir
              cannot go outside the module’s path hierarchy, so take extra care not to delete it or copy into it.

       --suffix=SUFFIX
              This  option allows you to override the default backup suffix used with the --backup (-b) option. The default suffix is a ~ if no
              --backup-dir was specified, otherwise it is an empty string.

       -u, --update
              This forces rsync to skip any files which exist on the destination and have a modified time that is newer than the  source  file.
              (If  an existing destination file has a modification time equal to the source file’s, it will be updated if the sizes are differ‐
              ent.)

              Note that this does not affect the copying of symlinks or other special files.  Also, a difference of  file  format  between  the
              sender  and  receiver is always considered to be important enough for an update, no matter what date is on the objects.  In other
              words, if the source has a directory where the destination has a file, the transfer would occur regardless of the timestamps.

              This option is a transfer rule, not an exclude, so it doesn’t affect the data that goes into the file-lists, and thus it  doesn’t
              affect deletions.  It just limits the files that the receiver requests to be transferred.

       --inplace
              This option changes how rsync transfers a file when its data needs to be updated: instead of the default method of creating a new
              copy of the file and moving it into place when it is complete, rsync instead writes the updated data directly to the  destination
              file.

              This has several effects:

              o      Hard  links  are  not  broken.   This means the new data will be visible through other hard links to the destination file.
                     Moreover, attempts to copy differing source files onto a multiply-linked destination file will result in a  "tug  of  war"
                     with the destination data changing back and forth.

              o      In-use  binaries  cannot  be  updated (either the OS will prevent this from happening, or binaries that attempt to swap-in
                     their data will misbehave or crash).

              o      The file’s data will be in an inconsistent state during the transfer and will be left that way if the transfer  is  inter‐
                     rupted or if an update fails.

              o      A  file  that  rsync  cannot write to cannot be updated. While a super user can update any file, a normal user needs to be
                     granted write permission for the open of the file for writing to be successful.

              o      The efficiency of rsync’s delta-transfer algorithm may be reduced if some data in  the  destination  file  is  overwritten
                     before  it  can  be copied to a position later in the file.  This does not apply if you use --backup, since rsync is smart
                     enough to use the backup file as the basis file for the transfer.


              WARNING: you should not use this option to update files that are being accessed by others, so be careful  when  choosing  to  use
              this for a copy.

              This  option  is useful for transferring large files with block-based changes or appended data, and also on systems that are disk
              bound, not network bound.  It can also help keep a copy-on-write filesystem snapshot from diverging the entire contents of a file
              that only has minor changes.

              The  option  implies  --partial  (since  an  interrupted transfer does not delete the file), but conflicts with --partial-dir and
              --delay-updates.  Prior to rsync 2.6.4 --inplace was also incompatible with --compare-dest and --link-dest.

       --append
              This causes rsync to update a file by appending data onto the end of the file, which presumes that the data that  already  exists
              on  the  receiving  side  is identical with the start of the file on the sending side.  If a file needs to be transferred and its
              size on the receiver is the same or longer than the size on the sender, the file is skipped.  This does not  interfere  with  the
              updating  of  a  file’s non-content attributes (e.g. permissions, ownership, etc.) when the file does not need to be transferred,
              nor does it affect the updating of any non-regular files.  Implies --inplace, but does not conflict with --sparse  (since  it  is
              always extending a file’s length).

       --append-verify
              This works just like the --append option, but the existing data on the receiving side is included in the full-file checksum veri‐
              fication step, which will cause a file to be resent if the final verification step fails  (rsync  uses  a  normal,  non-appending
              --inplace transfer for the resend).

              Note:  prior  to  rsync 3.0.0, the --append option worked like --append-verify, so if you are interacting with an older rsync (or
              the transfer is using a protocol prior to 30), specifying either append option will initiate an --append-verify transfer.

       -d, --dirs
              Tell the sending side to include any directories that are encountered.  Unlike --recursive, a directory’s contents are not copied
              unless  the directory name specified is "." or ends with a trailing slash (e.g. ".", "dir/.", "dir/", etc.).  Without this option
              or the --recursive option, rsync will skip all directories it encounters (and output a message to that effect for each one).   If
              you specify both --dirs and --recursive, --recursive takes precedence.

              The  --dirs  option  is  implied by the --files-from option or the --list-only option (including an implied --list-only usage) if
              --recursive wasn’t specified (so that directories are seen in the listing).  Specify --no-dirs (or --no-d) if you  want  to  turn
              this off.

              There  is  also  a  backward-compatibility  helper  option,  --old-dirs  (or  --old-d)  that  tells  rsync  to  use a hack of "-r
              --exclude=’/*/*’" to get an older rsync to list a single directory without recursing.

       -l, --links
              When symlinks are encountered, recreate the symlink on the destination.

       -L, --copy-links
              When symlinks are encountered, the item that they point to (the referent) is copied, rather than the symlink.  In older  versions
              of rsync, this option also had the side-effect of telling the receiving side to follow symlinks, such as symlinks to directories.
              In a modern rsync such as this one, you’ll need to specify --keep-dirlinks (-K) to get this extra behavior.  The  only  exception
              is when sending files to an rsync that is too old to understand -K -- in that case, the -L option will still have the side-effect
              of -K on that older receiving rsync.

       --copy-unsafe-links
              This tells rsync to copy the referent of symbolic links that point outside the copied tree.  Absolute symlinks are  also  treated
              like  ordinary  files,  and so are any symlinks in the source path itself when --relative is used.  This option has no additional
              effect if --copy-links was also specified.

       --safe-links
              This tells rsync to ignore any symbolic links which point outside the copied tree. All absolute symlinks are also ignored.  Using
              this option in conjunction with --relative may give unexpected results.

       -k, --copy-dirlinks
              This  option causes the sending side to treat a symlink to a directory as though it were a real directory.  This is useful if you
              don’t want symlinks to non-directories to be affected, as they would be using --copy-links.

              Without this option, if the sending side has replaced a directory with a symlink to a directory, the receiving side  will  delete
              anything that is in the way of the new symlink, including a directory hierarchy (as long as --force or --delete is in effect).

              See also --keep-dirlinks for an analogous option for the receiving side.

              --copy-dirlinks  applies  to  all  symlinks to directories in the source.  If you want to follow only a few specified symlinks, a
              trick you can use is to pass them as additional source args with a trailing slash, using --relative to make the  paths  match  up
              right.  For example:

              rsync -r --relative src/./ src/./follow-me/ dest/


              This  works  because  rsync  calls lstat(2) on the source arg as given, and the trailing slash makes lstat(2) follow the symlink,
              giving rise to a directory in the file-list which overrides the symlink found during the scan of "src/./".

       -K, --keep-dirlinks
              This option causes the receiving side to treat a symlink to a directory as though it were  a  real  directory,  but  only  if  it
              matches  a real directory from the sender.  Without this option, the receiver’s symlink would be deleted and replaced with a real
              directory.

              For example, suppose you transfer a directory "foo" that contains a file "file", but "foo" is a symlink to directory "bar" on the
              receiver.   Without  --keep-dirlinks, the receiver deletes symlink "foo", recreates it as a directory, and receives the file into
              the new directory.  With --keep-dirlinks, the receiver keeps the symlink and "file" ends up in "bar".

              One note of caution:  if you use --keep-dirlinks, you must trust all the symlinks  in  the  copy!   If  it  is  possible  for  an
              untrusted  user to create their own symlink to any directory, the user could then (on a subsequent copy) replace the symlink with
              a real directory and affect the content of whatever directory the symlink references.  For backup  copies,  you  are  better  off
              using something like a bind mount instead of a symlink to modify your receiving hierarchy.

              See also --copy-dirlinks for an analogous option for the sending side.

       -H, --hard-links
              This tells rsync to look for hard-linked files in the source and link together the corresponding files on the destination.  With‐
              out this option, hard-linked files in the source are treated as though they were separate files.

              This option does NOT necessarily ensure that the pattern of hard links on the destination exactly matches  that  on  the  source.
              Cases in which the destination may end up with extra hard links include the following:

              o      If the destination contains extraneous hard-links (more linking than what is present in the source file list), the copying
                     algorithm will not break them explicitly.  However, if one or more of the  paths  have  content  differences,  the  normal
                     file-update process will break those extra links (unless you are using the --inplace option).

              o      If  you  specify  a  --link-dest  directory  that  contains  hard  links, the linking of the destination files against the
                     --link-dest files can cause some paths in the destination to become linked together due to the --link-dest associations.


              Note that rsync can only detect hard links between files that are inside the transfer set.  If rsync  updates  a  file  that  has
              extra  hard-link connections to files outside the transfer, that linkage will be broken.  If you are tempted to use the --inplace
              option to avoid this breakage, be very careful that you know how your files are being updated so that you  are  certain  that  no
              unintended changes happen due to lingering hard links (and see the --inplace option for more caveats).

              If  incremental recursion is active (see --recursive), rsync may transfer a missing hard-linked file before it finds that another
              link for that contents exists elsewhere in the hierarchy.  This does not affect the accuracy of the transfer  (i.e.  which  files
              are hard-linked together), just its efficiency (i.e. copying the data for a new, early copy of a hard-linked file that could have
              been found later in the transfer in another member of the hard-linked set of files).  One way to avoid this  inefficiency  is  to
              disable incremental recursion using the --no-inc-recursive option.

       -p, --perms
              This  option  causes  the receiving rsync to set the destination permissions to be the same as the source permissions.  (See also
              the --chmod option for a way to modify what rsync considers to be the source permissions.)

              When this option is off, permissions are set as follows:

              o      Existing files (including updated files) retain their existing permissions, though the --executability option might change
                     just the execute permission for the file.

              o      New  files  get  their "normal" permission bits set to the source file’s permissions masked with the receiving directory’s
                     default permissions (either the receiving process’s umask, or the permissions specified via  the  destination  directory’s
                     default  ACL),  and  their special permission bits disabled except in the case where a new directory inherits a setgid bit
                     from its parent directory.


              Thus, when --perms and --executability are both disabled, rsync’s behavior is the same as that of other file-copy utilities, such
              as cp(1) and tar(1).

              In  summary:  to  give  destination files (both old and new) the source permissions, use --perms.  To give new files the destina‐
              tion-default permissions (while  leaving  existing  files  unchanged),  make  sure  that  the  --perms  option  is  off  and  use
              --chmod=ugo=rwX (which ensures that all non-masked bits get enabled).  If you’d care to make this latter behavior easier to type,
              you could define a popt alias for it, such as putting this line in the file ~/.popt (the following defines  the  -Z  option,  and
              includes --no-g to use the default group of the destination dir):

                 rsync alias -Z --no-p --no-g --chmod=ugo=rwX


              You could then use this new option in a command such as this one:

                 rsync -avZ src/ dest/


              (Caveat: make sure that -a does not follow -Z, or it will re-enable the two "--no-*" options mentioned above.)

              The  preservation  of  the  destination’s  setgid  bit on newly-created directories when --perms is off was added in rsync 2.6.7.
              Older rsync versions erroneously preserved the three special permission bits for newly-created files when --perms was off,  while
              overriding  the destination’s setgid bit setting on a newly-created directory.  Default ACL observance was added to the ACL patch
              for rsync 2.6.7, so older (or non-ACL-enabled) rsyncs use the umask even if default ACLs are present.  (Keep in mind that  it  is
              the version of the receiving rsync that affects these behaviors.)

       -E, --executability
              This  option  causes  rsync to preserve the executability (or non-executability) of regular files when --perms is not enabled.  A
              regular file is considered to be executable if at least one ’x’ is turned on in its permissions.  When  an  existing  destination
              file’s  executability  differs  from  that of the corresponding source file, rsync modifies the destination file’s permissions as
              follows:

              o      To make a file non-executable, rsync turns off all its ’x’ permissions.

              o      To make a file executable, rsync turns on each ’x’ permission that has a corresponding ’r’ permission enabled.


              If --perms is enabled, this option is ignored.

       -A, --acls
              This option causes rsync to update the destination ACLs to be the same as the source ACLs.  The option also implies --perms.

              The source and destination systems must have compatible ACL entries for this option  to  work  properly.   See  the  --fake-super
              option for a way to backup and restore ACLs that are not compatible.

       -X, --xattrs
              This option causes rsync to update the destination extended attributes to be the same as the source ones.

              For  systems that support extended-attribute namespaces, a copy being done by a super-user copies all namespaces except system.*.
              A normal user only copies the user.* namespace.  To be able to backup and restore non-user namespaces as a normal user,  see  the
              --fake-super option.

              Note  that  this  option does not copy rsyncs special xattr values (e.g. those used by --fake-super) unless you repeat the option
              (e.g. -XX).  This "copy all xattrs" mode cannot be used with --fake-super.

       --chmod
              This option tells rsync to apply one or more comma-separated "chmod" modes to the permission of the files in the  transfer.   The
              resulting  value  is treated as though it were the permissions that the sending side supplied for the file, which means that this
              option can seem to have no effect on existing files if --perms is not enabled.

              In addition to the normal parsing rules specified in the chmod(1) manpage, you can specify an item that should only  apply  to  a
              directory  by prefixing it with a ’D’, or specify an item that should only apply to a file by prefixing it with a ’F’.  For exam‐
              ple, the following will ensure that all directories get  marked  set-gid,  that  no  files  are  other-writable,  that  both  are
              user-writable and group-writable, and that both have consistent executability across all bits:

              --chmod=Dg+s,ug+w,Fo-w,+X


              It is also legal to specify multiple --chmod options, as each additional option is just appended to the list of changes to make.

              See the --perms and --executability options for how the resulting permission value can be applied to the files in the transfer.

       -o, --owner
              This  option  causes  rsync to set the owner of the destination file to be the same as the source file, but only if the receiving
              rsync is being run as the super-user (see also the --super and --fake-super options).  Without this  option,  the  owner  of  new
              and/or transferred files are set to the invoking user on the receiving side.

              The  preservation of ownership will associate matching names by default, but may fall back to using the ID number in some circum‐
              stances (see also the --numeric-ids option for a full discussion).

       -g, --group
              This option causes rsync to set the group of the destination file to be the same as the source file.  If the receiving program is
              not  running  as  the  super-user (or if --no-super was specified), only groups that the invoking user on the receiving side is a
              member of will be preserved.  Without this option, the group is set to the default group of the invoking user  on  the  receiving
              side.

              The  preservation of group information will associate matching names by default, but may fall back to using the ID number in some
              circumstances (see also the --numeric-ids option for a full discussion).

       --devices
              This option causes rsync to transfer character and block device files to the remote  system  to  recreate  these  devices.   This
              option has no effect if the receiving rsync is not run as the super-user (see also the --super and --fake-super options).

       --specials
              This option causes rsync to transfer special files such as named sockets and fifos.

       -D     The -D option is equivalent to --devices --specials.

       -t, --times
              This  tells  rsync  to  transfer modification times along with the files and update them on the remote system.  Note that if this
              option is not used, the optimization that excludes files that have not been modified cannot be effective; in other words, a miss‐
              ing  -t  or  -a  will  cause  the  next  transfer  to  behave  as  if it used -I, causing all files to be updated (though rsync’s
              delta-transfer algorithm will make the update fairly efficient if the files haven’t actually  changed,  you’re  much  better  off
              using -t).

       -O, --omit-dir-times
              This  tells  rsync to omit directories when it is preserving modification times (see --times).  If NFS is sharing the directories
              on the receiving side, it is a good idea to use -O.  This option is inferred if you use --backup without --backup-dir.

       --super
              This tells the receiving side to attempt super-user activities even if the receiving rsync wasn’t run by the  super-user.   These
              activities  include:  preserving users via the --owner option, preserving all groups (not just the current user’s groups) via the
              --groups option, and copying devices via the --devices option.  This is useful for systems that  allow  such  activities  without
              being the super-user, and also for ensuring that you will get errors if the receiving side isn’t being run as the super-user.  To
              turn off super-user activities, the super-user can use --no-super.

       --fake-super
              When this option is enabled, rsync simulates super-user activities by saving/restoring  the  privileged  attributes  via  special
              extended  attributes  that  are  attached  to  each file (as needed).  This includes the file’s owner and group (if it is not the
              default), the file’s device info (device & special files are created as empty text files), and any permission bits that we  won’t
              allow  to be set on the real file (e.g.  the real file gets u-s,g-s,o-t for safety) or that would limit the owner’s access (since
              the real super-user can always access/change a file, the files we create can always be accessed/changed by  the  creating  user).
              This option also handles ACLs (if --acls was specified) and non-user extended attributes (if --xattrs was specified).

              This is a good way to backup data without using a super-user, and to store ACLs from incompatible systems.

              The  --fake-super option only affects the side where the option is used.  To affect the remote side of a remote-shell connection,
              specify an rsync path:

                rsync -av --rsync-path="rsync --fake-super" /src/ host:/dest/


              Since there is only one "side" in a local copy, this option affects both the sending and receiving  of  files.   You’ll  need  to
              specify a copy using "localhost" if you need to avoid this, possibly using the "lsh" shell script (from the support directory) as
              a substitute for an actual remote shell (see --rsh).

              This option is overridden by both --super and --no-super.

              See also the "fake super" setting in the daemon’s rsyncd.conf file.

       -S, --sparse
              Try to handle sparse files efficiently so they take up less space on the destination.  Conflicts with --inplace because it’s  not
              possible to overwrite data in a sparse fashion.

       -n, --dry-run
              This  makes  rsync  perform a trial run that doesn’t make any changes (and produces mostly the same output as a real run).  It is
              most commonly used in combination with the -v, --verbose and/or -i, --itemize-changes options to see what  an  rsync  command  is
              going to do before one actually runs it.

              The  output  of  --itemize-changes is supposed to be exactly the same on a dry run and a subsequent real run (barring intentional
              trickery and system call failures); if it isn’t, that’s a bug.  Other output should be mostly unchanged, but may differ  in  some
              areas.   Notably,  a  dry  run  does  not send the actual data for file transfers, so --progress has no effect, the "bytes sent",
              "bytes received", "literal data", and "matched data" statistics are too small, and the "speedup" value is  equivalent  to  a  run
              where no file transfers were needed.

       -W, --whole-file
              With  this  option  rsync’s  delta-transfer  algorithm is not used and the whole file is sent as-is instead.  The transfer may be
              faster if this option is used when the bandwidth between the source and destination machines is higher than the bandwidth to disk
              (especially  when  the  "disk" is actually a networked filesystem).  This is the default when both the source and destination are
              specified as local paths, but only if no batch-writing option is in effect.

       -x, --one-file-system
              This tells rsync to avoid crossing a filesystem boundary when recursing.  This does not limit the user’s ability to specify items
              to  copy  from  multiple filesystems, just rsync’s recursion through the hierarchy of each directory that the user specified, and
              also the analogous recursion on the receiving side during deletion.  Also keep in mind that rsync treats a "bind"  mount  to  the
              same device as being on the same filesystem.

              If  this option is repeated, rsync omits all mount-point directories from the copy.  Otherwise, it includes an empty directory at
              each mount-point it encounters (using the attributes of the mounted directory because those of the underlying mount-point  direc‐
              tory are inaccessible).

              If rsync has been told to collapse symlinks (via --copy-links or --copy-unsafe-links), a symlink to a directory on another device
              is treated like a mount-point.  Symlinks to non-directories are unaffected by this option.

       --existing, --ignore-non-existing
              This tells rsync to skip creating files (including directories) that do not exist yet on the destination.  If this option is com‐
              bined with the --ignore-existing option, no files will be updated (which can be useful if all you want to do is delete extraneous
              files).

              This option is a transfer rule, not an exclude, so it doesn’t affect the data that goes into the file-lists, and thus it  doesn’t
              affect deletions.  It just limits the files that the receiver requests to be transferred.

       --ignore-existing
              This  tells  rsync  to  skip  updating files that already exist on the destination (this does not ignore existing directories, or
              nothing would get done).  See also --existing.

              This option is a transfer rule, not an exclude, so it doesn’t affect the data that goes into the file-lists, and thus it  doesn’t
              affect deletions.  It just limits the files that the receiver requests to be transferred.

              This  option  can be useful for those doing backups using the --link-dest option when they need to continue a backup run that got
              interrupted.  Since a --link-dest run is copied into a new directory hierarchy (when it is used properly), using --ignore  exist‐
              ing will ensure that the already-handled files don’t get tweaked (which avoids a change in permissions on the hard-linked files).
              This does mean that this option is only looking at the existing files in the destination hierarchy itself.

       --remove-source-files
              This tells rsync to remove from the sending side the files (meaning non-directories) that are a part of  the  transfer  and  have
              been successfully duplicated on the receiving side.

              Note  that  you should only use this option on source files that are quiescent.  If you are using this to move files that show up
              in a particular directory over to another host, make sure that the finished files get renamed  into  the  source  directory,  not
              directly  written  into it, so that rsync can’t possibly transfer a file that is not yet fully written.  If you can’t first write
              the files into a different directory, you should use a naming idiom that lets rsync avoid transferring files  that  are  not  yet
              finished  (e.g.  name  the  file  "foo.new"  when  it  is  written,  rename  it to "foo" when it is done, and then use the option
              --exclude='*.new' for the rsync transfer).

       --delete
              This tells rsync to delete extraneous files from the receiving side (ones that aren’t on the sending  side),  but  only  for  the
              directories  that  are  being synchronized.  You must have asked rsync to send the whole directory (e.g. "dir" or "dir/") without
              using a wildcard for the directory’s contents (e.g. "dir/*") since the wildcard is expanded by the shell and rsync  thus  gets  a
              request  to  transfer  individual  files,  not  the  files’ parent directory.  Files that are excluded from the transfer are also
              excluded from being deleted unless you use the --delete-excluded option or mark the rules as only matching on  the  sending  side
              (see the include/exclude modifiers in the FILTER RULES section).

              Prior to rsync 2.6.7, this option would have no effect unless --recursive was enabled.  Beginning with 2.6.7, deletions will also
              occur when --dirs (-d) is enabled, but only for directories whose contents are being copied.

              This option can be dangerous if used incorrectly!  It is a very good idea to first try a run using the --dry-run option  (-n)  to
              see what files are going to be deleted.

              If  the  sending  side  detects any I/O errors, then the deletion of any files at the destination will be automatically disabled.
              This is to prevent temporary filesystem failures (such as NFS errors) on the sending side from  causing  a  massive  deletion  of
              files on the destination.  You can override this with the --ignore-errors option.

              The  --delete  option may be combined with one of the --delete-WHEN options without conflict, as well as --delete-excluded.  How‐
              ever, if none of the --delete-WHEN options are specified, rsync will choose the --delete-during algorithm when talking  to  rsync
              3.0.0 or newer, and the --delete-before algorithm when talking to an older rsync.  See also --delete-delay and --delete-after.

       --delete-before
              Request  that  the  file-deletions on the receiving side be done before the transfer starts.  See --delete (which is implied) for
              more details on file-deletion.

              Deleting before the transfer is helpful if the filesystem is tight for space and removing extraneous files would help to make the
              transfer  possible.  However, it does introduce a delay before the start of the transfer, and this delay might cause the transfer
              to timeout (if --timeout was specified).  It also forces rsync to use the old, non-incremental recursion algorithm that  requires
              rsync to scan all the files in the transfer into memory at once (see --recursive).

       --delete-during, --del
              Request  that  the  file-deletions on the receiving side be done incrementally as the transfer happens.  The per-directory delete
              scan is done right before each directory is checked for updates, so it behaves like a more efficient  --delete-before,  including
              doing  the  deletions prior to any per-directory filter files being updated.  This option was first added in rsync version 2.6.4.
              See --delete (which is implied) for more details on file-deletion.

       --delete-delay
              Request that the file-deletions on the receiving side be computed during the transfer (like --delete-during),  and  then  removed
              after the transfer completes.  This is useful when combined with --delay-updates and/or --fuzzy, and is more efficient than using
              --delete-after (but can behave differently, since --delete-after computes the deletions in a separate pass after all updates  are
              done).   If  the  number of removed files overflows an internal buffer, a temporary file will be created on the receiving side to
              hold the names (it is removed while open, so you shouldn’t see it during the transfer).  If the creation of  the  temporary  file
              fails, rsync will try to fall back to using --delete-after (which it cannot do if --recursive is doing an incremental scan).  See
              --delete (which is implied) for more details on file-deletion.

       --delete-after
              Request that the file-deletions on the receiving side be done after the transfer has completed.  This is useful if you are  send‐
              ing  new per-directory merge files as a part of the transfer and you want their exclusions to take effect for the delete phase of
              the current transfer.  It also forces rsync to use the old, non-incremental recursion algorithm that requires rsync to  scan  all
              the  files in the transfer into memory at once (see --recursive).  See --delete (which is implied) for more details on file-dele‐
              tion.

       --delete-excluded
              In addition to deleting the files on the receiving side that are not on the sending side, this tells rsync  to  also  delete  any
              files  on the receiving side that are excluded (see --exclude).  See the FILTER RULES section for a way to make individual exclu‐
              sions behave this way on the receiver, and for a way to protect files from --delete-excluded.  See --delete  (which  is  implied)
              for more details on file-deletion.

       --ignore-errors
              Tells --delete to go ahead and delete files even when there are I/O errors.

       --force
              This  option  tells rsync to delete a non-empty directory when it is to be replaced by a non-directory.  This is only relevant if
              deletions are not active (see --delete for details).

              Note for older rsync versions: --force used to still be required when using --delete-after, and  it  used  to  be  non-functional
              unless the --recursive option was also enabled.

       --max-delete=NUM
              This  tells  rsync  not  to  delete more than NUM files or directories.  If that limit is exceeded, a warning is output and rsync
              exits with an error code of 25 (new for 3.0.0).

              Also new for version 3.0.0, you may specify --max-delete=0 to be warned about any extraneous files  in  the  destination  without
              removing  any  of  them.  Older clients interpreted this as "unlimited", so if you don’t know what version the client is, you can
              use the less obvious --max-delete=-1 as a backward-compatible way to specify that no deletions be allowed (though older  versions
              didn’t warn when the limit was exceeded).

       --max-size=SIZE
              This  tells  rsync  to  avoid transferring any file that is larger than the specified SIZE. The SIZE value can be suffixed with a
              string to indicate a size multiplier, and may be a fractional value (e.g. "--max-size=1.5m").

              This option is a transfer rule, not an exclude, so it doesn’t affect the data that goes into the file-lists, and thus it  doesn’t
              affect deletions.  It just limits the files that the receiver requests to be transferred.

              The suffixes are as follows: "K" (or "KiB") is a kibibyte (1024), "M" (or "MiB") is a mebibyte (1024*1024), and "G" (or "GiB") is
              a gibibyte (1024*1024*1024).  If you want the multiplier to be 1000 instead of 1024, use "KB", "MB", or "GB".  (Note:  lower-case
              is  also  accepted  for all values.)  Finally, if the suffix ends in either "+1" or "-1", the value will be offset by one byte in
              the indicated direction.

              Examples: --max-size=1.5mb-1 is 1499999 bytes, and --max-size=2g+1 is 2147483649 bytes.

       --min-size=SIZE
              This tells rsync to avoid transferring any file that is smaller than the specified SIZE,  which  can  help  in  not  transferring
              small, junk files.  See the --max-size option for a description of SIZE and other information.

       -B, --block-size=BLOCKSIZE
              This  forces the block size used in rsync’s delta-transfer algorithm to a fixed value.  It is normally selected based on the size
              of each file being updated.  See the technical report for details.

       -e, --rsh=COMMAND
              This option allows you to choose an alternative remote shell program to use for communication between the local and remote copies
              of rsync. Typically, rsync is configured to use ssh by default, but you may prefer to use rsh on a local network.

              If  this  option  is used with [user@]host::module/path, then the remote shell COMMAND will be used to run an rsync daemon on the
              remote host, and all data will be transmitted through that remote shell connection, rather than through a direct  socket  connec‐
              tion  to  a running rsync daemon on the remote host.  See the section "USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION"
              above.

              Command-line arguments are permitted in COMMAND provided that COMMAND is presented to rsync as a single argument.  You  must  use
              spaces  (not  tabs  or  other  whitespace)  to separate the command and args from each other, and you can use single- and/or dou‐
              ble-quotes to preserve spaces in an argument (but not backslashes).  Note that doubling a  single-quote  inside  a  single-quoted
              string gives you a single-quote; likewise for double-quotes (though you need to pay attention to which quotes your shell is pars‐
              ing and which quotes rsync is parsing).  Some examples:

                  -e 'ssh -p 2234'
                  -e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h %p"'


              (Note that ssh users can alternately customize site-specific connect options in their .ssh/config file.)

              You can also choose the remote shell program using the RSYNC_RSH environment variable, which accepts the same range of values  as
              -e.

              See also the --blocking-io option which is affected by this option.

       --rsync-path=PROGRAM
              Use  this  to  specify  what  program  is to be run on the remote machine to start-up rsync.  Often used when rsync is not in the
              default remote-shell’s path (e.g. --rsync-path=/usr/local/bin/rsync).  Note that PROGRAM is run with the help of a shell,  so  it
              can  be any program, script, or command sequence you’d care to run, so long as it does not corrupt the standard-in & standard-out
              that rsync is using to communicate.

              One tricky example is to set a different default directory on the remote  machine  for  use  with  the  --relative  option.   For
              instance:

                  rsync -avR --rsync-path="cd /a/b && rsync" host:c/d /e/


       -C, --cvs-exclude
              This  is a useful shorthand for excluding a broad range of files that you often don’t want to transfer between systems. It uses a
              similar algorithm to CVS to determine if a file should be ignored.

              The exclude list is initialized to exclude the following items (these initial items are marked as perishable --  see  the  FILTER
              RULES section):

                     RCS SCCS CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.state .nse_depinfo *~ #* .#* ,* _$* *$ *.old *.bak *.BAK *.orig *.rej
                     .del-* *.a *.olb *.o *.obj *.so *.exe *.Z *.elc *.ln core .svn/ .git/ .hg/ .bzr/


              then, files listed in a $HOME/.cvsignore are added to the list and any files listed in the CVSIGNORE  environment  variable  (all
              cvsignore names are delimited by whitespace).

              Finally,  any file is ignored if it is in the same directory as a .cvsignore file and matches one of the patterns listed therein.
              Unlike rsync’s filter/exclude files, these patterns are split on whitespace.  See the cvs(1) manual for more information.

              If you’re combining -C with your own --filter rules, you should note that these CVS excludes are appended at the end of your  own
              rules,  regardless of where the -C was placed on the command-line.  This makes them a lower priority than any rules you specified
              explicitly.  If you want to control where these CVS excludes get inserted into your filter rules, you should omit  the  -C  as  a
              command-line  option and use a combination of --filter=:C and --filter=-C (either on your command-line or by putting the ":C" and
              "-C" rules into a filter file with your other rules).  The first option turns on the per-directory scanning  for  the  .cvsignore
              file.  The second option does a one-time import of the CVS excludes mentioned above.

       -f, --filter=RULE
              This  option  allows you to add rules to selectively exclude certain files from the list of files to be transferred. This is most
              useful in combination with a recursive transfer.

              You may use as many --filter options on the command line as you like to build up the list of files to  exclude.   If  the  filter
              contains  whitespace,  be  sure  to quote it so that the shell gives the rule to rsync as a single argument.  The text below also
              mentions that you can use an underscore to replace the space that separates a rule from its arg.

              See the FILTER RULES section for detailed information on this option.

       -F     The -F option is a shorthand for adding two --filter rules to your command.  The first time it is used is a  shorthand  for  this
              rule:

                 --filter='dir-merge /.rsync-filter'


              This tells rsync to look for per-directory .rsync-filter files that have been sprinkled through the hierarchy and use their rules
              to filter the files in the transfer.  If -F is repeated, it is a shorthand for this rule:

                 --filter='exclude .rsync-filter'


              This filters out the .rsync-filter files themselves from the transfer.

              See the FILTER RULES section for detailed information on how these options work.

       --exclude=PATTERN
              This option is a simplified form of the --filter option that defaults to an exclude rule and does not allow the full rule-parsing
              syntax of normal filter rules.

              See the FILTER RULES section for detailed information on this option.

       --exclude-from=FILE
              This  option  is  related  to the --exclude option, but it specifies a FILE that contains exclude patterns (one per line).  Blank
              lines in the file and lines starting with ’;’ or ’#’ are ignored.  If FILE is -, the list will be read from standard input.

       --include=PATTERN
              This option is a simplified form of the --filter option that defaults to an include rule and does not allow the full rule-parsing
              syntax of normal filter rules.

              See the FILTER RULES section for detailed information on this option.

       --include-from=FILE
              This  option  is  related  to the --include option, but it specifies a FILE that contains include patterns (one per line).  Blank
              lines in the file and lines starting with ’;’ or ’#’ are ignored.  If FILE is -, the list will be read from standard input.

       --files-from=FILE
              Using this option allows you to specify the exact list of files to transfer (as read from the specified FILE or  -  for  standard
              input).  It also tweaks the default behavior of rsync to make transferring just the specified files and directories easier:

              o      The  --relative  (-R)  option is implied, which preserves the path information that is specified for each item in the file
                     (use --no-relative or --no-R if you want to turn that off).

              o      The --dirs (-d) option is implied, which will create directories specified in the list  on  the  destination  rather  than
                     noisily skipping them (use --no-dirs or --no-d if you want to turn that off).

              o      The --archive (-a) option’s behavior does not imply --recursive (-r), so specify it explicitly, if you want it.

              o      These  side-effects  change the default state of rsync, so the position of the --files-from option on the command-line has
                     no bearing on how other options are parsed (e.g. -a works the same before or after --files-from, as does  --no-R  and  all
                     other options).


              The  filenames that are read from the FILE are all relative to the source dir -- any leading slashes are removed and no ".." ref‐
              erences are allowed to go higher than the source dir.  For example, take this command:

                 rsync -a --files-from=/tmp/foo /usr remote:/backup


              If /tmp/foo contains the string "bin" (or even "/bin"), the /usr/bin directory will be created as /backup/bin on the remote host.
              If  it  contains "bin/" (note the trailing slash), the immediate contents of the directory would also be sent (without needing to
              be explicitly mentioned in the file -- this began in version 2.6.4).  In both cases, if the -r option  was  enabled,  that  dir’s
              entire  hierarchy would also be transferred (keep in mind that -r needs to be specified explicitly with --files-from, since it is
              not implied by -a).  Also note that the effect of the (enabled by default) --relative option is to duplicate only the  path  info
              that is read from the file -- it does not force the duplication of the source-spec path (/usr in this case).

              In  addition,  the --files-from file can be read from the remote host instead of the local host if you specify a "host:" in front
              of the file (the host must match one end of the transfer).  As a short-cut, you can specify just a prefix of ":" to mean "use the
              remote end of the transfer".  For example:

                 rsync -a --files-from=:/path/file-list src:/ /tmp/copy


              This would copy all the files specified in the /path/file-list file that was located on the remote "src" host.

              If  the  --iconv and --protect-args options are specified and the --files-from filenames are being sent from one host to another,
              the filenames will be translated from the sending host’s charset to the receiving host’s charset.

              NOTE: sorting the list of files in the --files-from input helps rsync to be more efficient, as it will avoid re-visiting the path
              elements  that are shared between adjacent entries.  If the input is not sorted, some path elements (implied directories) may end
              up being scanned multiple times, and rsync will eventually unduplicate them after they get turned into file-list elements.

       -0, --from0
              This tells rsync that the rules/filenames it reads from a file are terminated by a null (’\0’) character, not a NL, CR, or CR+LF.
              This affects --exclude-from, --include-from, --files-from, and any merged files specified in a --filter rule.  It does not affect
              --cvs-exclude (since all names read from a .cvsignore file are split on whitespace).

       -s, --protect-args
              This option sends all filenames and most options to the remote rsync without allowing the remote shell to interpret  them.   This
              means  that spaces are not split in names, and any non-wildcard special characters are not translated (such as ~, $, ;, &, etc.).
              Wildcards are expanded on the remote host by rsync (instead of the shell doing it).

              If you use this option with --iconv, the args related to the remote side will also be translated from the  local  to  the  remote
              character-set.  The translation happens before wild-cards are expanded.  See also the --files-from option.

       -T, --temp-dir=DIR
              This  option  instructs  rsync  to  use DIR as a scratch directory when creating temporary copies of the files transferred on the
              receiving side.  The default behavior is to create each temporary file in the same directory as the associated destination file.

              This option is most often used when the receiving disk partition does not have enough free space to hold a copy  of  the  largest
              file in the transfer.  In this case (i.e. when the scratch directory is on a different disk partition), rsync will not be able to
              rename each received temporary file over the top of the associated destination file, but instead must copy it into place.   Rsync
              does  this by copying the file over the top of the destination file, which means that the destination file will contain truncated
              data during this copy.  If this were not done this way (even if the destination file were first removed, the data locally  copied
              to  a temporary file in the destination directory, and then renamed into place) it would be possible for the old file to continue
              taking up disk space (if someone had it open), and thus there might not be enough room to fit the new version on the disk at  the
              same time.

              If you are using this option for reasons other than a shortage of disk space, you may wish to combine it with the --delay-updates
              option, which will ensure that all copied files get put into subdirectories in the destination hierarchy, awaiting the end of the
              transfer.   If  you  don’t have enough room to duplicate all the arriving files on the destination partition, another way to tell
              rsync that you aren’t overly concerned about disk space is to use the --partial-dir option with a  relative  path;  because  this
              tells  rsync that it is OK to stash off a copy of a single file in a subdir in the destination hierarchy, rsync will use the par‐
              tial-dir as a staging area to bring over the copied file, and then rename it into place from there. (Specifying  a  --partial-dir
              with an absolute path does not have this side-effect.)

       -y, --fuzzy
              This  option  tells  rsync  that it should look for a basis file for any destination file that is missing.  The current algorithm
              looks in the same directory as the destination file for either a file that has an identical size and modified-time,  or  a  simi‐
              larly-named file.  If found, rsync uses the fuzzy basis file to try to speed up the transfer.

              Note  that the use of the --delete option might get rid of any potential fuzzy-match files, so either use --delete-after or spec‐
              ify some filename exclusions if you need to prevent this.

       --compare-dest=DIR
              This option instructs rsync to use DIR on the destination machine as an additional hierarchy to compare destination files against
              doing  transfers  (if  the  files  are missing in the destination directory).  If a file is found in DIR that is identical to the
              sender’s file, the file will NOT be transferred to the destination directory.  This is useful for creating  a  sparse  backup  of
              just files that have changed from an earlier backup.

              Beginning in version 2.6.4, multiple --compare-dest directories may be provided, which will cause rsync to search the list in the
              order specified for an exact match.  If a match is found that differs only in attributes, a local copy is made and the attributes
              updated.  If a match is not found, a basis file from one of the DIRs will be selected to try to speed up the transfer.

              If DIR is a relative path, it is relative to the destination directory.  See also --copy-dest and --link-dest.

       --copy-dest=DIR
              This option behaves like --compare-dest, but rsync will also copy unchanged files found in DIR to the destination directory using
              a local copy.  This is useful for doing transfers to a new destination while leaving existing files  intact,  and  then  doing  a
              flash-cutover when all files have been successfully transferred.

              Multiple  --copy-dest  directories  may  be  provided,  which  will  cause rsync to search the list in the order specified for an
              unchanged file.  If a match is not found, a basis file from one of the DIRs will be selected to try to speed up the transfer.

              If DIR is a relative path, it is relative to the destination directory.  See also --compare-dest and --link-dest.

       --link-dest=DIR
              This option behaves like --copy-dest, but unchanged files are hard linked from DIR to the destination directory.  The files  must
              be identical in all preserved attributes (e.g. permissions, possibly ownership) in order for the files to be linked together.  An
              example:

                rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/


              If file’s aren’t linking, double-check their attributes.  Also check if some attributes are getting  forced  outside  of  rsync’s
              control,  such a mount option that squishes root to a single user, or mounts a removable drive with generic ownership (such as OS
              X’s "Ignore ownership on this volume" option).

              Beginning in version 2.6.4, multiple --link-dest directories may be provided, which will cause rsync to search the  list  in  the
              order specified for an exact match.  If a match is found that differs only in attributes, a local copy is made and the attributes
              updated.  If a match is not found, a basis file from one of the DIRs will be selected to try to speed up the transfer.

              This option works best when copying into an empty destination hierarchy, as rsync treats existing  files  as  definitive  (so  it
              never looks in the link-dest dirs when a destination file already exists), and as malleable (so it might change the attributes of
              a destination file, which affects all the hard-linked versions).

              Note that if you combine this option with --ignore-times, rsync will not link any files together because it only links  identical
              files together as a substitute for transferring the file, never as an additional check after the file is updated.

              If DIR is a relative path, it is relative to the destination directory.  See also --compare-dest and --copy-dest.

              Note  that rsync versions prior to 2.6.1 had a bug that could prevent --link-dest from working properly for a non-super-user when
              -o was specified (or implied by -a).  You can work-around this bug by avoiding the -o option when sending to an old rsync.

       -z, --compress
              With this option, rsync compresses the file data as it is sent to the destination machine, which reduces the amount of data being
              transmitted -- something that is useful over a slow connection.

              Note  that this option typically achieves better compression ratios than can be achieved by using a compressing remote shell or a
              compressing transport because it takes advantage of the implicit information in the matching data blocks that are not  explicitly
              sent over the connection.

              See the --skip-compress option for the default list of file suffixes that will not be compressed.

       --compress-level=NUM
              Explicitly  set  the compression level to use (see --compress) instead of letting it default.  If NUM is non-zero, the --compress
              option is implied.

       --skip-compress=LIST
              Override the list of file suffixes that will not be compressed.  The LIST should be one or more file suffixes (without  the  dot)
              separated by slashes (/).

              You may specify an empty string to indicate that no file should be skipped.

              Simple  character-class matching is supported: each must consist of a list of letters inside the square brackets (e.g. no special
              classes, such as "[:alpha:]", are supported, and ’-’ has no special meaning).

              The characters asterisk (*) and question-mark (?) have no special meaning.

              Here’s an example that specifies 6 suffixes to skip (since 1 of the 5 rules matches 2 suffixes):

                  --skip-compress=gz/jpg/mp[34]/7z/bz2


              The default list of suffixes that will not be compressed is this (in this version of rsync):

              7z avi bz2 deb gz iso jpeg jpg mov mp3 mp4 ogg rpm tbz tgz z zip

              This list will be replaced by your --skip-compress list in all but one situation: a copy  from  a  daemon  rsync  will  add  your
              skipped suffixes to its list of non-compressing files (and its list may be configured to a different default).

       --numeric-ids
              With  this  option rsync will transfer numeric group and user IDs rather than using user and group names and mapping them at both
              ends.

              By default rsync will use the username and groupname to determine what ownership to give files. The special uid 0 and the special
              group 0 are never mapped via user/group names even if the --numeric-ids option is not specified.

              If  a  user  or group has no name on the source system or it has no match on the destination system, then the numeric ID from the
              source system is used instead.  See also the comments on the "use chroot" setting in the rsyncd.conf manpage for  information  on
              how the chroot setting affects rsync’s ability to look up the names of the users and groups and what you can do about it.

       --timeout=TIMEOUT
              This  option allows you to set a maximum I/O timeout in seconds. If no data is transferred for the specified time then rsync will
              exit. The default is 0, which means no timeout.

       --contimeout
              This option allows you to set the amount of time that rsync will wait for its connection to an rsync daemon to succeed.   If  the
              timeout is reached, rsync exits with an error.

       --address
              By  default rsync will bind to the wildcard address when connecting to an rsync daemon.  The --address option allows you to spec‐
              ify a specific IP address (or hostname) to bind to.  See also this option in the --daemon mode section.

       --port=PORT
              This specifies an alternate TCP port number to use rather than the default of 873.  This is only needed if you are using the dou‐
              ble-colon  (::) syntax to connect with an rsync daemon (since the URL syntax has a way to specify the port as a part of the URL).
              See also this option in the --daemon mode section.

       --sockopts
              This option can provide endless fun for people who like to tune their systems to the utmost degree. You  can  set  all  sorts  of
              socket  options  which  may make transfers faster (or slower!). Read the man page for the setsockopt() system call for details on
              some of the options you may be able to set. By default no special socket options are set. This only affects direct socket connec‐
              tions to a remote rsync daemon.  This option also exists in the --daemon mode section.

       --blocking-io
              This  tells rsync to use blocking I/O when launching a remote shell transport.  If the remote shell is either rsh or remsh, rsync
              defaults to using blocking I/O, otherwise it defaults to using non-blocking I/O.  (Note that ssh prefers non-blocking I/O.)

       -i, --itemize-changes
              Requests a simple itemized list of the changes that are being made to each file, including attribute changes.   This  is  exactly
              the  same  as  specifying --out-format='%i %n%L'.  If you repeat the option, unchanged files will also be output, but only if the
              receiving rsync is at least version 2.6.7 (you can use -vv with older versions of rsync, but that also turns  on  the  output  of
              other verbose messages).

              The  "%i"  escape  has  a  cryptic output that is 11 letters long.  The general format is like the string YXcstpoguax, where Y is
              replaced by the type of update being done, X is replaced by the file-type, and the other letters represent attributes that may be
              output if they are being modified.

              The update types that replace the Y are as follows:

              o      A < means that a file is being transferred to the remote host (sent).

              o      A > means that a file is being transferred to the local host (received).

              o      A c means that a local change/creation is occurring for the item (such as the creation of a directory or the changing of a
                     symlink, etc.).

              o      A h means that the item is a hard link to another item (requires --hard-links).

              o      A . means that the item is not being updated (though it might have attributes that are being modified).

              o      A * means that the rest of the itemized-output area contains a message (e.g. "deleting").


              The file-types that replace the X are: f for a file, a d for a directory, an L for a symlink, a D for a device, and  a  S  for  a
              special file (e.g. named sockets and fifos).

              The  other  letters  in  the  string above are the actual letters that will be output if the associated attribute for the item is
              being updated or a "." for no change.  Three exceptions to this are: (1) a newly created item replaces each letter  with  a  "+",
              (2)  an identical item replaces the dots with spaces, and (3) an unknown attribute replaces each letter with a "?" (this can hap‐
              pen when talking to an older rsync).

              The attribute that is associated with each letter is as follows:

              o      A c means either that a regular file has a different checksum (requires --checksum) or that a symlink, device, or  special
                     file has a changed value.  Note that if you are sending files to an rsync prior to 3.0.1, this change flag will be present
                     only for checksum-differing regular files.

              o      A s means the size of a regular file is different and will be updated by the file transfer.

              o      A t means the modification time is different and is being updated to the sender’s value (requires --times).  An  alternate
                     value  of T means that the modification time will be set to the transfer time, which happens when a file/symlink/device is
                     updated without --times and when a symlink is changed and the receiver can’t set its time.  (Note:  when  using  an  rsync
                     3.0.0 client, you might see the s flag combined with t instead of the proper T flag for this time-setting failure.)

              o      A p means the permissions are different and are being updated to the sender’s value (requires --perms).

              o      An o means the owner is different and is being updated to the sender’s value (requires --owner and super-user privileges).

              o      A g means the group is different and is being updated to the sender’s value (requires --group and the authority to set the
                     group).

              o      The u slot is reserved for future use.

              o      The a means that the ACL information changed.

              o      The x means that the extended attribute information changed.


              One other output is possible:  when deleting files, the "%i" will output the string "*deleting"  for  each  item  that  is  being
              removed  (assuming  that  you are talking to a recent enough rsync that it logs deletions instead of outputting them as a verbose
              message).

       --out-format=FORMAT
              This allows you to specify exactly what the rsync client outputs to the user on a per-update basis.  The format is a text  string
              containing  embedded  single-character  escape  sequences  prefixed with a percent (%) character.   A default format of "%n%L" is
              assumed if -v is specified (which reports the name of the file and, if the item is a link, where it points).  For a full list  of
              the possible escape characters, see the "log format" setting in the rsyncd.conf manpage.

              Specifying  the --out-format option will mention each file, dir, etc. that gets updated in a significant way (a transferred file,
              a recreated symlink/device, or a touched directory).  In addition, if the itemize-changes escape (%i) is included in  the  string
              (e.g.  if  the  --itemize-changes option was used), the logging of names increases to mention any item that is changed in any way
              (as long as the receiving side is at least 2.6.4).  See the --itemize-changes option for a description of the output of "%i".

              Rsync will output the out-format string prior to a file’s transfer unless one of the transfer-statistic escapes is requested,  in
              which  case  the  logging  is done at the end of the file’s transfer.  When this late logging is in effect and --progress is also
              specified, rsync will also output the name of the file being transferred prior to its progress information (followed, of  course,
              by the out-format output).

       --log-file=FILE
              This  option  causes  rsync  to  log  what  it is doing to a file.  This is similar to the logging that a daemon does, but can be
              requested for the client side and/or the server side of a non-daemon transfer.  If specified as a client option, transfer logging
              will be enabled with a default format of "%i %n%L".  See the --log-file-format option if you wish to override this.

              Here’s a example command that requests the remote side to log what is happening:

                rsync -av --rsync-path="rsync --log-file=/tmp/rlog" src/ dest/


              This is very useful if you need to debug why a connection is closing unexpectedly.

       --log-file-format=FORMAT
              This  allows  you  to specify exactly what per-update logging is put into the file specified by the --log-file option (which must
              also be specified for this option to have any effect).  If you specify an empty string, updated files will not  be  mentioned  in
              the log file.  For a list of the possible escape characters, see the "log format" setting in the rsyncd.conf manpage.

              The default FORMAT used if --log-file is specified and this option is not is ’%i %n%L’.

       --stats
              This  tells  rsync  to  print  a  verbose  set  of  statistics  on  the file transfer, allowing you to tell how effective rsync’s
              delta-transfer algorithm is for your data.

              The current statistics are as follows:

              o      Number of files is the count of all "files" (in the generic sense), which includes directories, symlinks, etc.

              o      Number of files transferred is the count of normal files that were updated via  rsync’s  delta-transfer  algorithm,  which
                     does not include created dirs, symlinks, etc.

              o      Total  file size is the total sum of all file sizes in the transfer.  This does not count any size for directories or spe‐
                     cial files, but does include the size of symlinks.

              o      Total transferred file size is the total sum of all files sizes for just the transferred files.

              o      Literal data is how much unmatched file-update data we had to send to the receiver for it to recreate the updated files.

              o      Matched data is how much data the receiver got locally when recreating the updated files.

              o      File list size is how big the file-list data was when the sender sent it to  the  receiver.   This  is  smaller  than  the
                     in-memory size for the file list due to some compressing of duplicated data when rsync sends the list.

              o      File  list  generation time is the number of seconds that the sender spent creating the file list.  This requires a modern
                     rsync on the sending side for this to be present.

              o      File list transfer time is the number of seconds that the sender spent sending the file list to the receiver.

              o      Total bytes sent is the count of all the bytes that rsync sent from the client side to the server side.

              o      Total bytes received is the count of all non-message bytes that rsync received by the client side from  the  server  side.
                     "Non-message"  bytes means that we don’t count the bytes for a verbose message that the server sent to us, which makes the
                     stats more consistent.


       -8, --8-bit-output
              This tells rsync to leave all high-bit characters unescaped in the output instead of trying to test them to see if they’re  valid
              in  the  current locale and escaping the invalid ones.  All control characters (but never tabs) are always escaped, regardless of
              this option’s setting.

              The escape idiom that started in 2.6.7 is to output a literal backslash (\) and a hash (#), followed by exactly 3  octal  digits.
              For  example,  a newline would output as "\#012".  A literal backslash that is in a filename is not escaped unless it is followed
              by a hash and 3 digits (0-9).

       -h, --human-readable
              Output numbers in a more human-readable format.  This makes big numbers output using larger units, with a K, M, or G suffix.   If
              this  option  was specified once, these units are K (1000), M (1000*1000), and G (1000*1000*1000); if the option is repeated, the
              units are powers of 1024 instead of 1000.

       --partial
              By default, rsync will delete any partially transferred file if the transfer is interrupted. In some  circumstances  it  is  more
              desirable  to keep partially transferred files. Using the --partial option tells rsync to keep the partial file which should make
              a subsequent transfer of the rest of the file much faster.

       --partial-dir=DIR
              A better way to keep partial files than the --partial option is to specify a DIR that will be  used  to  hold  the  partial  data
              (instead  of  writing  it out to the destination file).  On the next transfer, rsync will use a file found in this dir as data to
              speed up the resumption of the transfer and then delete it after it has served its purpose.

              Note that if --whole-file is specified (or implied), any partial-dir file that is found for a file that  is  being  updated  will
              simply be removed (since rsync is sending files without using rsync’s delta-transfer algorithm).

              Rsync  will create the DIR if it is missing (just the last dir -- not the whole path).  This makes it easy to use a relative path
              (such as "--partial-dir=.rsync-partial") to have rsync create the partial-directory in  the  destination  file’s  directory  when
              needed, and then remove it again when the partial file is deleted.

              If  the partial-dir value is not an absolute path, rsync will add an exclude rule at the end of all your existing excludes.  This
              will prevent the sending of any partial-dir files that may exist on the sending side, and will also prevent the untimely deletion
              of  partial-dir  items  on  the  receiving  side.  An example: the above --partial-dir option would add the equivalent of "-f '-p
              .rsync-partial/'" at the end of any other filter rules.

              If you are supplying your own exclude rules, you may need to add your own exclude/hide/protect rule for the  partial-dir  because
              (1)  the  auto-added  rule  may  be  ineffective  at the end of your other rules, or (2) you may wish to override rsync’s exclude
              choice.  For instance, if you want to make rsync clean-up any left-over partial-dirs that may be lying around, you should specify
              --delete-after  and  add  a  "risk"  filter  rule, e.g.  -f 'R .rsync-partial/'.  (Avoid using --delete-before or --delete-during
              unless you don’t need rsync to use any of the left-over partial-dir data during the current run.)

              IMPORTANT: the --partial-dir should not be writable by other users or it is a security risk.  E.g. AVOID "/tmp".

              You can also set the partial-dir value the RSYNC_PARTIAL_DIR environment variable.  Setting this  in  the  environment  does  not
              force  --partial  to be enabled, but rather it affects where partial files go when --partial is specified.  For instance, instead
              of using --partial-dir=.rsync-tmp along with --progress, you could set RSYNC_PARTIAL_DIR=.rsync-tmp in your environment and  then
              just  use the -P option to turn on the use of the .rsync-tmp dir for partial transfers.  The only times that the --partial option
              does not look for this environment value are (1) when --inplace was specified (since --inplace conflicts with --partial-dir), and
              (2) when --delay-updates was specified (see below).

              For  the  purposes  of  the  daemon-config’s "refuse options" setting, --partial-dir does not imply --partial.  This is so that a
              refusal of the --partial option can be used to disallow the overwriting of destination files with a partial transfer, while still
              allowing the safer idiom provided by --partial-dir.

       --delay-updates
              This  option puts the temporary file from each updated file into a holding directory until the end of the transfer, at which time
              all the files are renamed into place in rapid succession.  This attempts to make the updating of the files a little more  atomic.
              By default the files are placed into a directory named ".~tmp~" in each file’s destination directory, but if you’ve specified the
              --partial-dir option, that directory will be used instead.  See the comments in the --partial-dir section for a discussion of how
              this  ".~tmp~"  dir  will  be excluded from the transfer, and what you can do if you want rsync to cleanup old ".~tmp~" dirs that
              might be lying around.  Conflicts with --inplace and --append.

              This option uses more memory on the receiving side (one bit per file transferred) and also requires enough free disk space on the
              receiving side to hold an additional copy of all the updated files.  Note also that you should not use an absolute path to --par‐
              tial-dir unless (1) there is no chance of any of the files in the transfer having the same name (since all the updated files will
              be  put  into  a  single directory if the path is absolute) and (2) there are no mount points in the hierarchy (since the delayed
              updates will fail if they can’t be renamed into place).

              See also the "atomic-rsync" perl script in the "support" subdir for an update  algorithm  that  is  even  more  atomic  (it  uses
              --link-dest and a parallel hierarchy of files).

       -m, --prune-empty-dirs
              This  option tells the receiving rsync to get rid of empty directories from the file-list, including nested directories that have
              no non-directory children.  This is useful for avoiding the creation of a bunch of useless directories when the sending rsync  is
              recursively scanning a hierarchy of files using include/exclude/filter rules.

              Note  that  the use of transfer rules, such as the --min-size option, does not affect what goes into the file list, and thus does
              not leave directories empty, even if none of the files in a directory match the transfer rule.

              Because the file-list is actually being pruned, this option also affects what directories get deleted when a  delete  is  active.
              However,  keep  in  mind that excluded files and directories can prevent existing items from being deleted due to an exclude both
              hiding source files and protecting destination files.  See the perishable filter-rule option for how to avoid this.

              You can prevent the pruning of certain empty directories from the file-list by using a global "protect"  filter.   For  instance,
              this option would ensure that the directory "emptydir" was kept in the file-list:

              --filter ’protect emptydir/’


              Here’s an example that copies all .pdf files in a hierarchy, only creating the necessary destination directories to hold the .pdf
              files, and ensures that any superfluous files and directories in the destination are removed (note the hide filter of  non-direc‐
              tories being used instead of an exclude):

              rsync -avm --del --include=’*.pdf’ -f ’hide,! */’ src/ dest


              If you didn’t want to remove superfluous destination files, the more time-honored options of "--include='*/' --exclude='*'" would
              work fine in place of the hide-filter (if that is more natural to you).

       --progress
              This option tells rsync to print information showing the progress of the transfer. This gives a bored user  something  to  watch.
              Implies --verbose if it wasn’t already specified.

              While rsync is transferring a regular file, it updates a progress line that looks like this:

                    782448  63%  110.64kB/s    0:00:04


              In  this example, the receiver has reconstructed 782448 bytes or 63% of the sender’s file, which is being reconstructed at a rate
              of 110.64 kilobytes per second, and the transfer will finish in 4 seconds if the current rate is maintained until the end.

              These statistics can be misleading if rsync’s delta-transfer algorithm is in use.  For example, if the sender’s file consists  of
              the  basis file followed by additional data, the reported rate will probably drop dramatically when the receiver gets to the lit‐
              eral data, and the transfer will probably take much longer to finish than the receiver estimated as it was finishing the  matched
              part of the file.

              When the file transfer finishes, rsync replaces the progress line with a summary line that looks like this:

                   1238099 100%  146.38kB/s    0:00:08  (xfer#5, to-check=169/396)


              In  this  example, the file was 1238099 bytes long in total, the average rate of transfer for the whole file was 146.38 kilobytes
              per second over the 8 seconds that it took to complete, it was the 5th transfer of a regular file during the current  rsync  ses‐
              sion,  and  there  are  169  more files for the receiver to check (to see if they are up-to-date or not) remaining out of the 396
              total files in the file-list.

       -P     The -P option is equivalent to --partial --progress.  Its purpose is to make it much easier to specify these two  options  for  a
              long transfer that may be interrupted.

       --password-file
              This  option  allows you to provide a password in a file for accessing an rsync daemon.  The file must not be world readable.  It
              should contain just the password as the first line of the file (all other lines are ignored).

              This option does not supply a password to a remote shell transport such as ssh; to learn how  to  do  that,  consult  the  remote
              shell’s  documentation.  When accessing an rsync daemon using a remote shell as the transport, this option only comes into effect
              after the remote shell finishes its authentication (i.e. if you have also specified a password in the daemon’s config file).

       --list-only
              This option will cause the source files to be listed instead of transferred.  This option is inferred if there is a single source
              arg  and  no  destination  specified,  so  its  main  uses are: (1) to turn a copy command that includes a destination arg into a
              file-listing command, or (2) to be able to specify more than one source arg (note: be sure to include the destination).  Caution:
              keep  in  mind that a source arg with a wild-card is expanded by the shell into multiple args, so it is never safe to try to list
              such an arg without using this option.  For example:

                  rsync -av --list-only foo* dest/


              Compatibility note:  when requesting a remote listing of files from an rsync that is version 2.6.3 or older, you may encounter an
              error  if  you  ask  for  a non-recursive listing.  This is because a file listing implies the --dirs option w/o --recursive, and
              older rsyncs don’t have that option.  To avoid this problem, either specify the --no-dirs option (if you don’t need to  expand  a
              directory’s content), or turn on recursion and exclude the content of subdirectories: -r --exclude='/*/*'.

       --bwlimit=KBPS
              This option allows you to specify a maximum transfer rate in kilobytes per second. This option is most effective when using rsync
              with large files (several megabytes and up). Due to the nature of rsync transfers, blocks of data are sent, then if rsync  deter‐
              mines the transfer was too fast, it will wait before sending the next data block. The result is an average transfer rate equaling
              the specified limit. A value of zero specifies no limit.

       --write-batch=FILE
              Record a file that can later be applied to another identical destination with --read-batch. See  the  "BATCH  MODE"  section  for
              details, and also the --only-write-batch option.

       --only-write-batch=FILE
              Works  like  --write-batch,  except  that  no  updates are made on the destination system when creating the batch.  This lets you
              transport the changes to the destination system via some other means and then apply the changes via --read-batch.

              Note that you can feel free to write the batch directly to some portable media: if this media fills to capacity before the end of
              the  transfer,  you  can  just apply that partial transfer to the destination and repeat the whole process to get the rest of the
              changes (as long as you don’t mind a partially updated destination system while the multi-update cycle is happening).

              Also note that you only save bandwidth when pushing changes to a remote system  because  this  allows  the  batched  data  to  be
              diverted  from  the  sender into the batch file without having to flow over the wire to the receiver (when pulling, the sender is
              remote, and thus can’t write the batch).

       --read-batch=FILE
              Apply all of the changes stored in FILE, a file previously generated by --write-batch.  If FILE is -, the batch data will be read
              from standard input.  See the "BATCH MODE" section for details.

       --protocol=NUM
              Force an older protocol version to be used.  This is useful for creating a batch file that is compatible with an older version of
              rsync.  For instance, if rsync 2.6.4 is being used with the --write-batch option, but rsync 2.6.3 is what will be used to run the
              --read-batch  option,  you should use "--protocol=28" when creating the batch file to force the older protocol version to be used
              in the batch file (assuming you can’t upgrade the rsync on the reading system).

       --iconv=CONVERT_SPEC
              Rsync can convert filenames between character sets using this option.  Using a CONVERT_SPEC of "." tells rsync  to  look  up  the
              default  character-set  via the locale setting.  Alternately, you can fully specify what conversion to do by giving a local and a
              remote charset separated by a comma in the order --iconv=LOCAL,REMOTE, e.g.  --iconv=utf8,iso88591.  This order ensures that  the
              option  will stay the same whether you’re pushing or pulling files.  Finally, you can specify either --no-iconv or a CONVERT_SPEC
              of "-" to turn off any conversion.  The default setting of this option is  site-specific,  and  can  also  be  affected  via  the
              RSYNC_ICONV environment variable.

              For a list of what charset names your local iconv library supports, you can run "iconv --list".

              If  you specify the --protect-args option (-s), rsync will translate the filenames you specify on the command-line that are being
              sent to the remote host.  See also the --files-from option.

              Note that rsync does not do any conversion of names in filter files (including include/exclude files).  It is up to you to ensure
              that  you’re  specifying  matching  rules  that  can  match  on  both sides of the transfer.  For instance, you can specify extra
              include/exclude rules if there are filename differences on the two sides that need to be accounted for.

              When you pass an --iconv option to an rsync daemon that allows it, the daemon uses the charset specified in its "charset" config‐
              uration  parameter regardless of the remote charset you actually pass.  Thus, you may feel free to specify just the local charset
              for a daemon transfer (e.g. --iconv=utf8).

       -4, --ipv4 or -6, --ipv6
              Tells rsync to prefer IPv4/IPv6 when creating sockets.  This only affects sockets that rsync has direct control over, such as the
              outgoing socket when directly contacting an rsync daemon.  See also these options in the --daemon mode section.

              If  rsync  was  complied  without support for IPv6, the --ipv6 option will have no effect.  The --version output will tell you if
              this is the case.

       --checksum-seed=NUM
              Set the checksum seed to the integer NUM.  This 4 byte checksum seed is included in each block and file checksum calculation.  By
              default  the checksum seed is generated by the server and defaults to the current time() .  This option is used to set a specific
              checksum seed, which is useful for applications that want repeatable block and file checksums, or in  the  case  where  the  user
              wants a more random checksum seed.  Setting NUM to 0 causes rsync to use the default of time() for checksum seed.


DAEMON OPTIONS
       The options allowed when starting an rsync daemon are as follows:

       --daemon
              This  tells  rsync  that  it is to run as a daemon.  The daemon you start running may be accessed using an rsync client using the
              host::module or rsync://host/module/ syntax.

              If standard input is a socket then rsync will assume that it is being run via inetd, otherwise it will detach  from  the  current
              terminal and become a background daemon.  The daemon will read the config file (rsyncd.conf) on each connect made by a client and
              respond to requests accordingly.  See the rsyncd.conf(5) man page for more details.

       --address
              By default rsync will bind to the wildcard address when run as a daemon with the --daemon option.  The  --address  option  allows
              you  to  specify  a  specific  IP  address (or hostname) to bind to.  This makes virtual hosting possible in conjunction with the
              --config option.  See also the "address" global option in the rsyncd.conf manpage.

       --bwlimit=KBPS
              This option allows you to specify a maximum transfer rate in kilobytes per second for the data the daemon sends.  The client  can
              still specify a smaller --bwlimit value, but their requested value will be rounded down if they try to exceed it.  See the client
              version of this option (above) for some extra details.

       --config=FILE
              This specifies an alternate config file than the default.  This is only relevant when --daemon  is  specified.   The  default  is
              /etc/rsyncd.conf unless the daemon is running over a remote shell program and the remote user is not the super-user; in that case
              the default is rsyncd.conf in the current directory (typically $HOME).

       --no-detach
              When running as a daemon, this option instructs rsync to not detach itself and become  a  background  process.   This  option  is
              required when running as a service on Cygwin, and may also be useful when rsync is supervised by a program such as daemontools or
              AIX’s System Resource Controller.  --no-detach is also recommended when rsync is run under a debugger.  This option has no effect
              if rsync is run from inetd or sshd.

       --port=PORT
              This  specifies  an  alternate  TCP  port number for the daemon to listen on rather than the default of 873.  See also the "port"
              global option in the rsyncd.conf manpage.

       --log-file=FILE
              This option tells the rsync daemon to use the given log-file name instead of using the "log file" setting in the config file.

       --log-file-format=FORMAT
              This option tells the rsync daemon to use the given FORMAT string instead of using the "log format" setting in the  config  file.
              It also enables "transfer logging" unless the string is empty, in which case transfer logging is turned off.

       --sockopts
              This overrides the socket options setting in the rsyncd.conf file and has the same syntax.

       -v, --verbose
              This  option  increases  the amount of information the daemon logs during its startup phase.  After the client connects, the dae‐
              mon’s verbosity level will be controlled by the options that the client used and the "max verbosity" setting in the module’s con‐
              fig section.

       -4, --ipv4 or -6, --ipv6
              Tells rsync to prefer IPv4/IPv6 when creating the incoming sockets that the rsync daemon will use to listen for connections.  One
              of these options may be required in older versions of Linux to work around an IPv6 bug in the kernel  (if  you  see  an  "address
              already in use" error when nothing else is using the port, try specifying --ipv6 or --ipv4 when starting the daemon).

              If  rsync  was  complied  without support for IPv6, the --ipv6 option will have no effect.  The --version output will tell you if
              this is the case.

       -h, --help
              When specified after --daemon, print a short help page describing the options available for starting an rsync daemon.


FILTER RULES
       The filter rules allow for flexible selection of which files to transfer (include) and which files to skip (exclude).  The rules  either
       directly  specify  include/exclude  patterns  or  they  specify a way to acquire more include/exclude patterns (e.g. to read them from a
       file).

       As the list of files/directories to transfer is built, rsync checks each name to be transferred against the list of include/exclude pat‐
       terns  in turn, and the first matching pattern is acted on:  if it is an exclude pattern, then that file is skipped; if it is an include
       pattern then that filename is not skipped; if no matching pattern is found, then the filename is not skipped.

       Rsync builds an ordered list of filter rules as specified on the command-line.  Filter rules have the following syntax:

              RULE [PATTERN_OR_FILENAME]
              RULE,MODIFIERS [PATTERN_OR_FILENAME]


       You have your choice of using either short or long RULE names, as described below.  If you use a short-named rule,  the  ’,’  separating
       the  RULE  from the MODIFIERS is optional.  The PATTERN or FILENAME that follows (when present) must come after either a single space or
       an underscore (_).  Here are the available rule prefixes:

              exclude, - specifies an exclude pattern.
              include, + specifies an include pattern.
              merge, . specifies a merge-file to read for more rules.
              dir-merge, : specifies a per-directory merge-file.
              hide, H specifies a pattern for hiding files from the transfer.
              show, S files that match the pattern are not hidden.
              protect, P specifies a pattern for protecting files from deletion.
              risk, R files that match the pattern are not protected.
              clear, ! clears the current include/exclude list (takes no arg)


       When rules are being read from a file, empty lines are ignored, as are comment lines that start with a "#".

       Note that the --include/--exclude command-line options do not allow the full range of rule parsing as described above -- they only allow
       the  specification  of  include/exclude  patterns plus a "!" token to clear the list (and the normal comment parsing when rules are read
       from a file).  If a pattern does not begin with "- " (dash, space) or "+ " (plus, space), then the rule will be interpreted as if  "+  "
       (for  an include option) or "- " (for an exclude option) were prefixed to the string.  A --filter option, on the other hand, must always
       contain either a short or long rule name at the start of the rule.

       Note also that the --filter, --include, and --exclude options take one rule/pattern each. To add  multiple  ones,  you  can  repeat  the
       options on the command-line, use the merge-file syntax of the --filter option, or the --include-from/--exclude-from options.

INCLUDE/EXCLUDE PATTERN RULES
       You  can  include and exclude files by specifying patterns using the "+", "-", etc. filter rules (as introduced in the FILTER RULES sec‐
       tion above).  The include/exclude rules each specify a pattern that is matched against the names of the  files  that  are  going  to  be
       transferred.  These patterns can take several forms:

       o      if  the  pattern  starts  with  a  /  then it is anchored to a particular spot in the hierarchy of files, otherwise it is matched
              against the end of the pathname.  This is similar to a leading ^ in regular expressions.  Thus "/foo" would match a name of "foo"
              at either the "root of the transfer" (for a global rule) or in the merge-file’s directory (for a per-directory rule).  An unqual‐
              ified "foo" would match a name of "foo" anywhere in the tree because the algorithm is applied recursively from the top  down;  it
              behaves as if each path component gets a turn at being the end of the filename.  Even the unanchored "sub/foo" would match at any
              point in the hierarchy where a "foo" was found within a directory named "sub".  See the section on ANCHORING INCLUDE/EXCLUDE PAT‐
              TERNS for a full discussion of how to specify a pattern that matches at the root of the transfer.

       o      if the pattern ends with a / then it will only match a directory, not a regular file, symlink, or device.

       o      rsync  chooses  between  doing a simple string match and wildcard matching by checking if the pattern contains one of these three
              wildcard characters: ’*’, ’?’, and ’[’ .

       o      a ’*’ matches any path component, but it stops at slashes.

       o      use ’**’ to match anything, including slashes.

       o      a ’?’ matches any character except a slash (/).

       o      a ’[’ introduces a character class, such as [a-z] or [[:alpha:]].

       o      in a wildcard pattern, a backslash can be used to escape a wildcard character, but it is matched literally when no wildcards  are
              present.

       o      if  the  pattern  contains a / (not counting a trailing /) or a "**", then it is matched against the full pathname, including any
              leading directories. If the pattern doesn’t contain a / or a "**", then it is matched only against the  final  component  of  the
              filename.   (Remember that the algorithm is applied recursively so "full filename" can actually be any portion of a path from the
              starting directory on down.)

       o      a trailing "dir_name/***" will match both the directory (as if "dir_name/" had been specified) and everything  in  the  directory
              (as if "dir_name/**" had been specified).  This behavior was added in version 2.6.7.


       Note  that,  when  using  the --recursive (-r) option (which is implied by -a), every subcomponent of every path is visited from the top
       down, so include/exclude patterns get applied recursively to each subcomponent’s full name (e.g. to include "/foo/bar/baz" the subcompo‐
       nents "/foo" and "/foo/bar" must not be excluded).  The exclude patterns actually short-circuit the directory traversal stage when rsync
       finds the files to send.  If a pattern excludes a particular parent directory, it  can  render  a  deeper  include  pattern  ineffectual
       because  rsync did not descend through that excluded section of the hierarchy.  This is particularly important when using a trailing ’*’
       rule.  For instance, this won’t work:

              + /some/path/this-file-will-not-be-found
              + /file-is-included
              - *


       This fails because the parent directory "some" is excluded by the ’*’ rule, so rsync never visits any of the  files  in  the  "some"  or
       "some/path" directories.  One solution is to ask for all directories in the hierarchy to be included by using a single rule: "+ */" (put
       it somewhere before the "- *" rule), and perhaps use the --prune-empty-dirs option.  Another solution is to add specific  include  rules
       for all the parent dirs that need to be visited.  For instance, this set of rules works fine:

              + /some/
              + /some/path/
              + /some/path/this-file-is-found
              + /file-also-included
              - *


       Here are some examples of exclude/include matching:

       o      "- *.o" would exclude all names matching *.o

       o      "- /foo" would exclude a file (or directory) named foo in the transfer-root directory

       o      "- foo/" would exclude any directory named foo

       o      "- /foo/*/bar" would exclude any file named bar which is at two levels below a directory named foo in the transfer-root directory

       o      "- /foo/**/bar" would exclude any file named bar two or more levels below a directory named foo in the transfer-root directory

       o      The  combination  of  "+  */", "+ *.c", and "- *" would include all directories and C source files but nothing else (see also the
              --prune-empty-dirs option)

       o      The combination of "+ foo/", "+ foo/bar.c", and "- *" would include only the foo directory and foo/bar.c (the foo directory  must
              be explicitly included or it would be excluded by the "*")


       The following modifiers are accepted after a "+" or "-":

       o      A  /  specifies  that the include/exclude rule should be matched against the absolute pathname of the current item.  For example,
              "-/ /etc/passwd" would exclude the passwd file any time the transfer was sending files from the "/etc" directory,  and  "-/  sub‐
              dir/foo" would always exclude "foo" when it is in a dir named "subdir", even if "foo" is at the root of the current transfer.

       o      A ! specifies that the include/exclude should take effect if the pattern fails to match.  For instance, "-! */" would exclude all
              non-directories.

       o      A C is used to indicate that all the global CVS-exclude rules should be inserted as excludes in place of the "-C".  No arg should
              follow.

       o      An s is used to indicate that the rule applies to the sending side.  When a rule affects the sending side, it prevents files from
              being transferred.  The default is for a rule to affect both sides unless --delete-excluded was specified, in which case  default
              rules  become  sender-side  only.   See  also the hide (H) and show (S) rules, which are an alternate way to specify sending-side
              includes/excludes.

       o      An r is used to indicate that the rule applies to the receiving side.  When a rule affects the receiving side, it prevents  files
              from  being  deleted.  See the s modifier for more info.  See also the protect (P) and risk (R) rules, which are an alternate way
              to specify receiver-side includes/excludes.

       o      A p indicates that a rule is perishable, meaning that it is ignored in directories that are being deleted.  For instance, the  -C
              option’s  default  rules that exclude things like "CVS" and "*.o" are marked as perishable, and will not prevent a directory that
              was removed on the source from being deleted on the destination.


MERGE-FILE FILTER RULES
       You can merge whole files into your filter rules by specifying either a merge (.) or a dir-merge (:) filter rule (as introduced  in  the
       FILTER RULES section above).

       There  are  two  kinds of merged files -- single-instance (’.’) and per-directory (’:’).  A single-instance merge file is read one time,
       and its rules are incorporated into the filter list in the place of the "." rule.  For per-directory merge files, rsync will scan  every
       directory  that  it  traverses  for  the named file, merging its contents when the file exists into the current list of inherited rules.
       These per-directory rule files must be created on the sending side because it is the sending side that is being scanned for  the  avail‐
       able  files  to  transfer.  These rule files may also need to be transferred to the receiving side if you want them to affect what files
       don’t get deleted (see PER-DIRECTORY RULES AND DELETE below).

       Some examples:

              merge /etc/rsync/default.rules
              . /etc/rsync/default.rules
              dir-merge .per-dir-filter
              dir-merge,n- .non-inherited-per-dir-excludes
              :n- .non-inherited-per-dir-excludes


       The following modifiers are accepted after a merge or dir-merge rule:

       o      A - specifies that the file should consist of only exclude patterns, with no other rule-parsing except for in-file comments.

       o      A + specifies that the file should consist of only include patterns, with no other rule-parsing except for in-file comments.

       o      A C is a way to specify that the file should be read in a CVS-compatible manner.  This turns on  ’n’,  ’w’,  and  ’-’,  but  also
              allows the list-clearing token (!) to be specified.  If no filename is provided, ".cvsignore" is assumed.

       o      A e will exclude the merge-file name from the transfer; e.g.  "dir-merge,e .rules" is like "dir-merge .rules" and "- .rules".

       o      An n specifies that the rules are not inherited by subdirectories.

       o      A  w  specifies  that the rules are word-split on whitespace instead of the normal line-splitting.  This also turns off comments.
              Note: the space that separates the prefix from the rule is treated specially, so "- foo + bar" is parsed as two  rules  (assuming
              that prefix-parsing wasn’t also disabled).

       o      You  may  also specify any of the modifiers for the "+" or "-" rules (above) in order to have the rules that are read in from the
              file default to having that modifier set (except for the ! modifier, which would not be useful).  For instance, "merge,-/  .excl"
              would  treat  the  contents  of  .excl  as  absolute-path excludes, while "dir-merge,s .filt" and ":sC" would each make all their
              per-directory rules apply only on the sending side.  If the merge rule specifies sides to affect (via the  s  or  r  modifier  or
              both), then the rules in the file must not specify sides (via a modifier or a rule prefix such as hide).


       Per-directory  rules  are  inherited  in  all subdirectories of the directory where the merge-file was found unless the ’n’ modifier was
       used.  Each subdirectory’s rules are prefixed to the inherited per-directory rules from its parents, which  gives  the  newest  rules  a
       higher  priority  than the inherited rules.  The entire set of dir-merge rules are grouped together in the spot where the merge-file was
       specified, so it is possible to override dir-merge rules via a rule that got specified earlier in the list of global  rules.   When  the
       list-clearing rule ("!") is read from a per-directory file, it only clears the inherited rules for the current merge file.

       Another way to prevent a single rule from a dir-merge file from being inherited is to anchor it with a leading slash.  Anchored rules in
       a per-directory merge-file are relative to the merge-file’s directory, so a pattern "/foo" would only match the file "foo" in the direc‐
       tory where the dir-merge filter file was found.

       Here’s an example filter file which you’d specify via --filter=". file":

              merge /home/user/.global-filter
              - *.gz
              dir-merge .rules
              + *.[ch]
              - *.o


       This  will merge the contents of the /home/user/.global-filter file at the start of the list and also turns the ".rules" filename into a
       per-directory filter file.  All rules read in prior to the start of the directory scan follow the global anchoring rules (i.e. a leading
       slash matches at the root of the transfer).

       If  a  per-directory merge-file is specified with a path that is a parent directory of the first transfer directory, rsync will scan all
       the parent dirs from that starting point to the transfer directory for the indicated per-directory file.  For instance, here is a common
       filter (see -F):

              --filter=': /.rsync-filter'


       That  rule  tells  rsync  to  scan  for the file .rsync-filter in all directories from the root down through the parent directory of the
       transfer prior to the start of the normal directory scan of the file in the directories that are sent as a part of the transfer.  (Note:
       for an rsync daemon, the root is always the same as the module’s "path".)

       Some examples of this pre-scanning for per-directory files:

              rsync -avF /src/path/ /dest/dir
              rsync -av --filter=': ../../.rsync-filter' /src/path/ /dest/dir
              rsync -av --filter=': .rsync-filter' /src/path/ /dest/dir


       The  first  two  commands  above  will  look for ".rsync-filter" in "/" and "/src" before the normal scan begins looking for the file in
       "/src/path" and its subdirectories.  The last command avoids the parent-dir scan and only looks for the ".rsync-filter"  files  in  each
       directory that is a part of the transfer.

       If  you  want to include the contents of a ".cvsignore" in your patterns, you should use the rule ":C", which creates a dir-merge of the
       .cvsignore file, but parsed in a CVS-compatible manner.  You can use this to affect where the --cvs-exclude (-C) option’s  inclusion  of
       the per-directory .cvsignore file gets placed into your rules by putting the ":C" wherever you like in your filter rules.  Without this,
       rsync would add the dir-merge rule for the .cvsignore file at the end of all your other rules (giving it a lower priority than your com‐
       mand-line rules).  For example:

              cat <<EOT | rsync -avC --filter='. -' a/ b
              + foo.o
              :C
              - *.old
              EOT
              rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b


       Both  of  the  above rsync commands are identical.  Each one will merge all the per-directory .cvsignore rules in the middle of the list
       rather than at the end.  This allows their dir-specific rules to supersede the rules that follow the :C instead of being subservient  to
       all  your  rules.  To affect the other CVS exclude rules (i.e. the default list of exclusions, the contents of $HOME/.cvsignore, and the
       value of $CVSIGNORE) you should omit the -C command-line option and instead insert a "-C" rule into  your  filter  rules;  e.g.  "--fil‐
       ter=-C".

LIST-CLEARING FILTER RULE
       You  can  clear  the  current  include/exclude list by using the "!" filter rule (as introduced in the FILTER RULES section above).  The
       "current" list is either the global list of rules (if the rule is encountered while parsing the filter options) or a set  of  per-direc‐
       tory rules (which are inherited in their own sub-list, so a subdirectory can use this to clear out the parent’s rules).

ANCHORING INCLUDE/EXCLUDE PATTERNS
       As  mentioned earlier, global include/exclude patterns are anchored at the "root of the transfer" (as opposed to per-directory patterns,
       which are anchored at the merge-file’s directory).  If you think of the transfer as a subtree of names that are being sent  from  sender
       to receiver, the transfer-root is where the tree starts to be duplicated in the destination directory.  This root governs where patterns
       that start with a / match.

       Because the matching is relative to the transfer-root, changing the trailing slash on a source path or changing your use of the  --rela‐
       tive  option  affects  the path you need to use in your matching (in addition to changing how much of the file tree is duplicated on the
       destination host).  The following examples demonstrate this.

       Let’s say that we want to match two  source  files,  one  with  an  absolute  path  of  "/home/me/foo/bar",  and  one  with  a  path  of
       "/home/you/bar/baz".  Here is how the various command choices differ for a 2-source transfer:

              Example cmd: rsync -a /home/me /home/you /dest
              +/- pattern: /me/foo/bar
              +/- pattern: /you/bar/baz
              Target file: /dest/me/foo/bar
              Target file: /dest/you/bar/baz


              Example cmd: rsync -a /home/me/ /home/you/ /dest
              +/- pattern: /foo/bar               (note missing "me")
              +/- pattern: /bar/baz               (note missing "you")
              Target file: /dest/foo/bar
              Target file: /dest/bar/baz


              Example cmd: rsync -a --relative /home/me/ /home/you /dest
              +/- pattern: /home/me/foo/bar       (note full path)
              +/- pattern: /home/you/bar/baz      (ditto)
              Target file: /dest/home/me/foo/bar
              Target file: /dest/home/you/bar/baz


              Example cmd: cd /home; rsync -a --relative me/foo you/ /dest
              +/- pattern: /me/foo/bar      (starts at specified path)
              +/- pattern: /you/bar/baz     (ditto)
              Target file: /dest/me/foo/bar
              Target file: /dest/you/bar/baz


       The  easiest  way to see what name you should filter is to just look at the output when using --verbose and put a / in front of the name
       (use the --dry-run option if you’re not yet ready to copy any files).

PER-DIRECTORY RULES AND DELETE
       Without a delete option, per-directory rules are only relevant on the sending side, so you can feel free  to  exclude  the  merge  files
       themselves  without affecting the transfer.  To make this easy, the ’e’ modifier adds this exclude for you, as seen in these two equiva‐
       lent commands:

              rsync -av --filter=': .excl' --exclude=.excl host:src/dir /dest
              rsync -av --filter=':e .excl' host:src/dir /dest


       However, if you want to do a delete on the receiving side AND you want some files to be excluded from being deleted, you’ll need  to  be
       sure  that  the receiving side knows what files to exclude.  The easiest way is to include the per-directory merge files in the transfer
       and use --delete-after, because this ensures that the receiving side gets all the same exclude rules as the sending side before it tries
       to delete anything:

              rsync -avF --delete-after host:src/dir /dest


       However,  if  the merge files are not a part of the transfer, you’ll need to either specify some global exclude rules (i.e. specified on
       the command line), or you’ll need to maintain your own per-directory merge files on the receiving side.  An example of the first is this
       (assume that the remote .rules files exclude themselves):

       rsync -av --filter=’: .rules’ --filter=’. /my/extra.rules’
          --delete host:src/dir /dest


       In  the above example the extra.rules file can affect both sides of the transfer, but (on the sending side) the rules are subservient to
       the rules merged from the .rules files because they were specified after the per-directory merge rule.

       In one final example, the remote side is excluding the .rsync-filter files from the transfer, but we want to use our  own  .rsync-filter
       files  to  control  what  gets deleted on the receiving side.  To do this we must specifically exclude the per-directory merge files (so
       that they don’t get deleted) and then put rules into the local files to control what else should not get deleted.   Like  one  of  these
       commands:

           rsync -av --filter=':e /.rsync-filter' --delete \
               host:src/dir /dest
           rsync -avFF --delete host:src/dir /dest


BATCH MODE
       Batch  mode can be used to apply the same set of updates to many identical systems. Suppose one has a tree which is replicated on a num‐
       ber of hosts.  Now suppose some changes have been made to this source tree and those changes need to be propagated to the  other  hosts.
       In  order  to  do this using batch mode, rsync is run with the write-batch option to apply the changes made to the source tree to one of
       the destination trees.  The write-batch option causes the rsync client to store in a "batch file" all the information needed  to  repeat
       this operation against other, identical destination trees.

       Generating the batch file once saves having to perform the file status, checksum, and data block generation more than once when updating
       multiple destination trees. Multicast transport protocols can be used to transfer the batch update files in parallel to  many  hosts  at
       once, instead of sending the same data to every host individually.

       To  apply  the recorded changes to another destination tree, run rsync with the read-batch option, specifying the name of the same batch
       file, and the destination tree.  Rsync updates the destination tree using the information stored in the batch file.

       For your convenience, a script file is also created when the write-batch option is used:  it will be named the same as  the  batch  file
       with ".sh" appended.  This script file contains a command-line suitable for updating a destination tree using the associated batch file.
       It can be executed using a Bourne (or Bourne-like) shell, optionally passing in an alternate destination tree  pathname  which  is  then
       used  instead  of the original destination path.  This is useful when the destination tree path on the current host differs from the one
       used to create the batch file.

       Examples:

              $ rsync --write-batch=foo -a host:/source/dir/ /adest/dir/
              $ scp foo* remote:
              $ ssh remote ./foo.sh /bdest/dir/


              $ rsync --write-batch=foo -a /source/dir/ /adest/dir/
              $ ssh remote rsync --read-batch=- -a /bdest/dir/ <foo


       In these examples, rsync is used to update /adest/dir/ from /source/dir/ and the information to repeat this operation is stored in "foo"
       and "foo.sh".  The host "remote" is then updated with the batched data going into the directory /bdest/dir.  The differences between the
       two examples reveals some of the flexibility you have in how you deal with batches:

       o      The first example shows that the initial copy doesn’t have to be local -- you can push or pull data to/from a remote  host  using
              either the remote-shell syntax or rsync daemon syntax, as desired.

       o      The first example uses the created "foo.sh" file to get the right rsync options when running the read-batch command on the remote
              host.

       o      The second example reads the batch data via standard input so that the batch file doesn’t need to be copied to the remote machine
              first.   This  example  avoids  the foo.sh script because it needed to use a modified --read-batch option, but you could edit the
              script file if you wished to make use of it (just be sure that no other option is trying to  use  standard  input,  such  as  the
              "--exclude-from=-" option).


       Caveats:

       The  read-batch  option expects the destination tree that it is updating to be identical to the destination tree that was used to create
       the batch update fileset.  When a difference between the destination trees is encountered the update might be discarded with  a  warning
       (if  the  file  appears  to be up-to-date already) or the file-update may be attempted and then, if the file fails to verify, the update
       discarded with an error.  This means that it should be safe to re-run a read-batch operation if the command  got  interrupted.   If  you
       wish  to  force  the  batched-update  to always be attempted regardless of the file’s size and date, use the -I option (when reading the
       batch).  If an error occurs, the destination tree will probably be in a partially updated state. In that case, rsync can be used in  its
       regular (non-batch) mode of operation to fix up the destination tree.

       The  rsync  version used on all destinations must be at least as new as the one used to generate the batch file.  Rsync will die with an
       error if the protocol version in the batch file is too new for the batch-reading rsync to handle.  See also the --protocol option for  a
       way  to have the creating rsync generate a batch file that an older rsync can understand.  (Note that batch files changed format in ver‐
       sion 2.6.3, so mixing versions older than that with newer versions will not work.)

       When reading a batch file, rsync will force the value of certain options to match the data in the batch file if you didn’t set  them  to
       the  same as the batch-writing command.  Other options can (and should) be changed.  For instance --write-batch changes to --read-batch,
       --files-from is dropped, and the --filter/--include/--exclude options are not needed unless one of the --delete options is specified.

       The code that creates the BATCH.sh file transforms any filter/include/exclude options into a single list that is appended  as  a  "here"
       document  to  the  shell  script  file.   An  advanced  user can use this to modify the exclude list if a change in what gets deleted by
       --delete is desired.  A normal user can ignore this detail and just use the  shell  script  as  an  easy  way  to  run  the  appropriate
       --read-batch command for the batched data.

       The original batch mode in rsync was based on "rsync+", but the latest version uses a new implementation.

SYMBOLIC LINKS
       Three basic behaviors are possible when rsync encounters a symbolic link in the source directory.

       By default, symbolic links are not transferred at all.  A message "skipping non-regular" file is emitted for any symlinks that exist.

       If --links is specified, then symlinks are recreated with the same target on the destination.  Note that --archive implies --links.

       If --copy-links is specified, then symlinks are "collapsed" by copying their referent, rather than the symlink.

       Rsync  can also distinguish "safe" and "unsafe" symbolic links.  An example where this might be used is a web site mirror that wishes to
       ensure that the rsync module that is copied does not include symbolic links to /etc/passwd in the public section  of  the  site.   Using
       --copy-unsafe-links  will  cause  any  links  to  be copied as the file they point to on the destination.  Using --safe-links will cause
       unsafe links to be omitted altogether.  (Note that you must specify --links for --safe-links to have any effect.)

       Symbolic links are considered unsafe if they are absolute symlinks (start with /), empty, or if they contain enough ".."  components  to
       ascend from the directory being copied.

       Here’s  a  summary  of  how  the symlink options are interpreted.  The list is in order of precedence, so if your combination of options
       isn’t mentioned, use the first line that is a complete subset of your options:

       --copy-links
              Turn all symlinks into normal files (leaving no symlinks for any other options to affect).

       --links --copy-unsafe-links
              Turn all unsafe symlinks into files and duplicate all safe symlinks.

       --copy-unsafe-links
              Turn all unsafe symlinks into files, noisily skip all safe symlinks.

       --links --safe-links
              Duplicate safe symlinks and skip unsafe ones.

       --links
              Duplicate all symlinks.

DIAGNOSTICS
       rsync occasionally produces error messages that may seem a little cryptic. The one that seems to cause the most confusion  is  "protocol
       version mismatch -- is your shell clean?".

       This  message  is usually caused by your startup scripts or remote shell facility producing unwanted garbage on the stream that rsync is
       using for its transport. The way to diagnose this problem is to run your remote shell like this:

              ssh remotehost /bin/true > out.dat


       then look at out.dat. If everything is working correctly then out.dat should be a zero length file. If you are getting the  above  error
       from rsync then you will probably find that out.dat contains some text or data. Look at the contents and try to work out what is produc‐
       ing it. The most common cause is incorrectly configured shell startup scripts (such as .cshrc or .profile) that  contain  output  state‐
       ments for non-interactive logins.

       If you are having trouble debugging filter patterns, then try specifying the -vv option.  At this level of verbosity rsync will show why
       each individual file is included or excluded.

EXIT VALUES
       0      Success

       1      Syntax or usage error

       2      Protocol incompatibility

       3      Errors selecting input/output files, dirs

       4      Requested action not supported: an attempt was made to manipulate 64-bit files on a platform that  cannot  support  them;  or  an
              option was specified that is supported by the client and not by the server.

       5      Error starting client-server protocol

       6      Daemon unable to append to log-file

       10     Error in socket I/O

       11     Error in file I/O

       12     Error in rsync protocol data stream

       13     Errors with program diagnostics

       14     Error in IPC code

       20     Received SIGUSR1 or SIGINT

       21     Some error returned by waitpid()

       22     Error allocating core memory buffers

       23     Partial transfer due to error

       24     Partial transfer due to vanished source files

       25     The --max-delete limit stopped deletions

       30     Timeout in data send/receive

       35     Timeout waiting for daemon connection


ENVIRONMENT VARIABLES
       CVSIGNORE
              The  CVSIGNORE  environment  variable  supplements any ignore patterns in .cvsignore files. See the --cvs-exclude option for more
              details.

       RSYNC_ICONV
              Specify a default --iconv setting using this environment variable. (First supported in 3.0.0.)

       RSYNC_RSH
              The RSYNC_RSH environment variable allows you to override the default shell used  as  the  transport  for  rsync.   Command  line
              options are permitted after the command name, just as in the -e option.

       RSYNC_PROXY
              The  RSYNC_PROXY environment variable allows you to redirect your rsync client to use a web proxy when connecting to a rsync dae‐
              mon. You should set RSYNC_PROXY to a hostname:port pair.

       RSYNC_PASSWORD
              Setting RSYNC_PASSWORD to the required password allows you to run authenticated rsync connections to an rsync daemon without user
              intervention. Note that this does not supply a password to a remote shell transport such as ssh; to learn how to do that, consult
              the remote shell’s documentation.

       USER or LOGNAME
              The USER or LOGNAME environment variables are used to determine the default username sent to an rsync daemon.  If neither is set,
              the username defaults to "nobody".

       HOME   The HOME environment variable is used to find the user’s default .cvsignore file.


FILES
       /etc/rsyncd.conf or rsyncd.conf

SEE ALSO
       rsyncd.conf(5)

BUGS
       times are transferred as *nix time_t values

       When transferring to FAT filesystems rsync may re-sync unmodified files.  See the comments on the --modify-window option.

       file permissions, devices, etc. are transferred as native numerical values

       see also the comments on the --delete option

       Please report bugs! See the web site at http://rsync.samba.org/

VERSION
       This man page is current for version 3.0.9 of rsync.

INTERNAL OPTIONS
       The  options  --server  and --sender are used internally by rsync, and should never be typed by a user under normal circumstances.  Some
       awareness of these options may be needed in certain scenarios, such as when setting up a login that can only run an rsync command.   For
       instance,  the  support  directory  of the rsync distribution has an example script named rrsync (for restricted rsync) that can be used
       with a restricted ssh login.

CREDITS
       rsync is distributed under the GNU public license.  See the file COPYING for details.

       A WEB site is available at http://rsync.samba.org/.  The site includes an FAQ-O-Matic which may cover questions unanswered by this  man‐
       ual page.

       The primary ftp site for rsync is ftp://rsync.samba.org/pub/rsync.

       We would be delighted to hear from you if you like this program.  Please contact the mailing-list at rsync@lists.samba.org.

       This program uses the excellent zlib compression library written by Jean-loup Gailly and Mark Adler.

THANKS
       Special thanks go out to: John Van Essen, Matt McCutchen, Wesley W. Terpstra, David Dykstra, Jos Backus, Sebastian Krahmer, Martin Pool,
       and our gone-but-not-forgotten compadre, J.W. Schultz.

       Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Rothwell and David Bell.  I’ve probably missed some people, my  apolo‐
       gies if I have.

AUTHOR
       rsync  was  originally  written by Andrew Tridgell and Paul Mackerras.  Many people have later contributed to it.  It is currently main‐
       tained by Wayne Davison.

       Mailing lists for support and development are available at http://lists.samba.org



                                                                  23 Sep 2011                                                          rsync(1)